Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modulation of DNA double-strand break repair as a strategy to improve precise genome editing

Abstract

In the present day, it is possible to incorporate targeted mutations or replace a gene using genome editing techniques such as customisable CRISPR/Cas9 system. Although induction of DNA double-strand breaks (DSBs) by genome editing tools can be repaired by both non-homologous end joining (NHEJ) and homologous recombination (HR), the skewness of the former pathway in human and other mammals normally result in imprecise repair. Scientists working at the crossroads of DNA repair and genome editing have devised new strategies for using a specific pathway to their advantage. Refinement in the efficiency of precise gene editing was witnessed upon downregulation of NHEJ by knockdown or using small molecule inhibitors on one hand, and upregulation of HR proteins and addition of HR stimulators, other hand. The exploitation of cell cycle phase differences together with appropriate donor DNA length/sequence and small molecules has provided further improvement in precise genome editing. The present article reviews the mechanisms of improving the efficiency of precise genome editing in several model organisms and in clinics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cartoon depicting various steps associated with different DNA double-strand break repair pathways in mammals.
Fig. 2: Advancement of genome editing tools over the years and mechanism of genome editing using various tools.
Fig. 3: Cartoon showing a comparison of genome editing tools and their properties/advantages.
Fig. 4: Improvement in precise genome editing by utilising small molecules and overexpression of HR proteins with CRISPR/Cas9.
Fig. 5: Different forms and derivatives of SCR7.

Similar content being viewed by others

References

  1. Gaj T, Sirk SJ, Shui SL, Liu J. Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol. 2016;8:a023754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brinkman EK, Chen T, de Haas M, Holland HA, Akhtar W, van Steensel B. Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks. Mol Cell. 2018;70:801–13.e806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jasin M, Haber JE. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair. 2016;44:6–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mao Z, Bozzella M, Seluanov A, Gorbunova V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair. 2008;7:1765–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153:910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 2014;24:142–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lackner DH, Carre A, Guzzardo PM, Banning C, Mangena R, Henley T, et al. A generic strategy for CRISPR-Cas9-mediated gene tagging. Nat Commun. 2015;6:10237.

    Article  CAS  PubMed  Google Scholar 

  9. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.

    Article  CAS  PubMed  Google Scholar 

  10. Javadekar SM, Raghavan SC. Snaps and mends: DNA breaks and chromosomal translocations. FEBS J. 2015;282:2627–45.

    Article  CAS  PubMed  Google Scholar 

  11. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27:247–54.

    Article  CAS  PubMed  Google Scholar 

  12. Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res. 2011;39:5813–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Srivastava M, Raghavan SC. DNA double-strand break repair inhibitors as cancer therapeutics. Chem Biol. 2015;22:17–29.

    Article  CAS  PubMed  Google Scholar 

  14. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wyman C, Kanaar R. DNA double-strand break repair: all’s well that ends well. Annu Rev Genet. 2006;40:363–83.

    Article  CAS  PubMed  Google Scholar 

  16. Haber JE. A life investigating pathways that repair broken chromosomes. Annu Rev Genet. 2016;50:1–28.

    Article  CAS  PubMed  Google Scholar 

  17. Heyer WD. Regulation of recombination and genomic maintenance. Cold Spring Harb Perspect Biol. 2015;7:a016501.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith CE, Llorente B, Symington LS. Template switching during break-induced replication. Nature. 2007;447:102–5.

    Article  CAS  PubMed  Google Scholar 

  19. Bhargava R, Onyango DO, Stark JM. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet. 2016;32:566–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pandey MR. SC DNA double-strand break repair in mammals. J Radiat Cancer Res. 2017;8:93–7.

    Article  Google Scholar 

  21. Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2013;2:130–43.

    CAS  PubMed  Google Scholar 

  22. Grundy GJ, Rulten SL, Zeng Z, Arribas-Bosacoma R, Iles N, Manley K, et al. APLF promotes the assembly and activity of non-homologous end joining protein complexes. EMBO J. 2013;32:112–25.

    Article  CAS  PubMed  Google Scholar 

  23. Ochi T, Blackford AN, Coates J, Jhujh S, Mehmood S, Tamura N, et al. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science. 2015;347:185–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hung PJ, Johnson B, Chen BR, Byrum AK, Bredemeyer AL, Yewdell WT, et al. MRI is a DNA damage response adaptor during classical non-homologous end joining. Mol Cell. 2018;71:332–42.e338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharma S, Javadekar SM, Pandey M, Srivastava M, Kumari R, Raghavan SC. Homology and enzymatic requirements of microhomology-dependent alternative end joining. Cell Death Dis. 2015;6:e1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boboila C, Jankovic M, Yan CT, Wang JH, Wesemann DR, Zhang T, et al. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci USA. 2010;107:3034–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kent T, Chandramouly G, McDevitt SM, Ozdemir AY, Pomerantz RT. Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta. Nat Struct Mol Biol. 2015;22:230–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26:52–64.

    Article  CAS  PubMed  Google Scholar 

  29. Tomimatsu N, Mukherjee B, Catherine Hardebeck M, Ilcheva M, Vanessa Camacho C, Louise Harris J, et al. Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat Commun. 2014;5:3561.

    Article  PubMed  CAS  Google Scholar 

  30. Wu Y, Kantake N, Sugiyama T, Kowalczykowski SC. Rad51 protein controls Rad52-mediated DNA annealing. J Biol Chem. 2008;283:14883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lok BH, Carley AC, Tchang B, Powell SN. RAD52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination. Oncogene. 2013;32:3552–8.

    Article  CAS  PubMed  Google Scholar 

  32. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509–12.

    Article  CAS  PubMed  Google Scholar 

  33. Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering. J Mol Biol. 2016;428:963–89.

    Article  CAS  PubMed  Google Scholar 

  34. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1996;93:1156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 2000;28:3361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326:1501.

    Article  CAS  PubMed  Google Scholar 

  39. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Savic N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res. 2016;168:15–21.

    Article  CAS  PubMed  Google Scholar 

  42. Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis E, et al. CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun. 2017;8:2024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014;11:399–402.

    Article  CAS  PubMed  Google Scholar 

  44. Hyodo T, Rahman ML, Karnan S, Ito T, Toyoda A, Ota A, et al. Tandem paired nicking promotes precise genome editing with scarce interference by p53. Cell Rep. 2020;30:1195–207.e1197.

    Article  CAS  PubMed  Google Scholar 

  45. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, et al. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci USA. 2008;105:19821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pawelczak KS, Gavande NS, VanderVere-Carozza PS, Turchi JJ. Modulating DNA repair pathways to improve precision genome engineering. ACS Chem Biol. 2018;13:389–96.

    Article  CAS  PubMed  Google Scholar 

  48. Leahy JJ, Golding BT, Griffin RJ, Hardcastle IR, Richardson C, Rigoreau L, et al. Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening of chromenone libraries. Bioorg Med Chem Lett. 2004;14:6083–7.

    Article  CAS  PubMed  Google Scholar 

  49. Robert F, Barbeau M, Ethier S, Dostie J, Pelletier J. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med. 2015;7:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Dungl DA, Maginn EN, Stronach EA. Preventing damage limitation: targeting DNA-PKcs and DNA double-strand break repair pathways for ovarian cancer therapy. Front Oncol. 2015;5:240.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540:144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kostyushev D, Kostyusheva A, Brezgin S, Zarifyan D, Utkina A, Goptar I, et al. Suppressing the NHEJ pathway by DNA-PKcs inhibitor NU7026 prevents degradation of HBV cccDNA cleaved by CRISPR/Cas9. Sci Rep. 2019;9:1847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Riesenberg S, Chintalapati M, Macak D, Kanis P, Maricic T, Paabo S. Simultaneous precise editing of multiple genes in human cells. Nucleic Acids Res. 2019;47:e116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu S, Kim J, Tang Q, Chen Q, Liu J, Xu Y, et al. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway. Protein Cell. 2020;11:352–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saito S, Maeda R, Adachi N. Dual loss of human POLQ and LIG4 abolishes random integration. Nat Commun. 2017;8:16112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zelensky AN, Schimmel J, Kool H, Kanaar R, Tijsterman M. Inactivation of Pol theta and C-NHEJ eliminates off-target integration of exogenous DNA. Nat Commun. 2017;8:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Boel A, De Saffel H, Steyaert W, Callewaert B, De Paepe A, Coucke PJ, et al. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Dis Model Mech. 2018;11:dmm 035352.

    Article  CAS  Google Scholar 

  58. Frank KM, Sekiguchi JM, Seidl KJ, Swat W, Rathbun GA, Cheng HL, et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature. 1998;396:173–7.

    Article  CAS  PubMed  Google Scholar 

  59. Srivastava M, Nambiar M, Sharma S, Karki SS, Goldsmith G, Hegde M, et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell. 2012;151:1474–87.

    Article  CAS  PubMed  Google Scholar 

  60. Kulashreshtha M, Mehta IS, Kumar P, Rao BJ. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by Upsilon-H2AX signaling. Nucleic Acids Res. 2016;44:8272–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reid DA, Keegan S, Leo-Macias A, Watanabe G, Strande NT, Chang HH, et al. Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair. Proc Natl Acad Sci USA. 2015;112:E2575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reid DA, Conlin MP, Yin Y, Chang HH, Watanabe G, Lieber MR, et al. Bridging of double-stranded breaks by the nonhomologous end-joining ligation complex is modulated by DNA end chemistry. Nucleic Acids Res. 2017;45:1872–8.

    Article  CAS  PubMed  Google Scholar 

  63. Tripathi V, Agarwal H, Priya S, Batra H, Modi P, Pandey M, et al. MRN complex-dependent recruitment of ubiquitylated BLM helicase to DSBs negatively regulates DNA repair pathways. Nat Commun. 2018;9:1016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Singh P, Schimenti JC, Bolcun-Filas E. A mouse geneticist’s practical guide to CRISPR applications. Genetics. 2015;199:1–15.

    Article  CAS  PubMed  Google Scholar 

  65. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33:538–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33:543–8.

    Article  CAS  PubMed  Google Scholar 

  67. Ma Y, Chen W, Zhang X, Yu L, Dong W, Pan S, et al. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein. RNA Biol. 2016;13:605–12.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep. 2016;14:1555–66.

    Article  CAS  PubMed  Google Scholar 

  69. Yang D, Scavuzzo MA, Chmielowiec J, Sharp R, Bajic A, Borowiak M. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep. 2016;6:21264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li G, Zhang X, Zhong C, Mo J, Quan R, Yang J, et al. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Sci Rep. 2017;7:8943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Shao S, Ren C, Liu Z, Bai Y, Chen Z, Wei Z, et al. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52. Int J Biochem Cell Biol. 2017;92:43–52.

    Article  CAS  PubMed  Google Scholar 

  72. Lin C, Li H, Hao M, Xiong D, Luo Y, Huang C, et al. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing of HSV-1 virus in human cells. Sci Rep. 2016;6:34531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu Z, Shi Z, Guo X, Jiang B, Wang G, Luo D, et al. Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell Biosci. 2018;8:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Vartak SV, Swarup HA, Gopalakrishnan V, Gopinatha VK, Ropars V, Nambiar M, et al. Autocyclized and oxidized forms of SCR7 induce cancer cell death by inhibiting nonhomologous DNA end joining in a Ligase IV dependent manner. FEBS J. 2018;285:3959–76.

    Article  CAS  PubMed  Google Scholar 

  75. Greco GE, Matsumoto Y, Brooks RC, Lu Z, Lieber MR, Tomkinson AE. SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV. DNA Repair. 2016;43:18–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Killian T, Dickopf S, Haas AK, Kirstenpfad C, Mayer K, Brinkmann U. Disruption of diphthamide synthesis genes and resulting toxin resistance as a robust technology for quantifying and optimizing CRISPR/Cas9-mediated gene editing. Sci Rep. 2017;7:15480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Aslan Y, Tadjuidje E, Zorn AM, Cha SW. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus. Development. 2017;144:2852–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. John F, George J, Srivastava M, Hassan PA, Aswal VK, Karkie SS, et al. Pluronic copolymer encapsulated SCR7 as a potential anticancer agent. Faraday Discussions. 2015;177:155–61.

    Article  CAS  PubMed  Google Scholar 

  79. John F, George J, Vartak SV, Srivastava M, Hassan PA, Aswal VK, et al. Enhanced efficacy of pluronic copolymer micelle encapsulated SCR7 against cancer cell proliferation. Macromol Biosci. 2015;15:521–34.

    Article  CAS  PubMed  Google Scholar 

  80. Pandey M, Gopalakrishnan V, Swarup HA, Kumar S, Gudapureddy R, Jose AE, et al. Water-soluble version of SCR7-pyrazine inhibits DNA repair and abrogates tumor cell proliferation. J Radiat Cancer Res. 2019;10:27–43.

    Article  Google Scholar 

  81. Ray U, Jose AE, Suresh R, Kaloor U, Swarup HA, Nambiar M, et al. Water-soluble SCR7 Can Abrogate DNA End Joining and Induce Cancer Cell Death. Clin Oncol Res. 2020;3:2–7.

    Google Scholar 

  82. Ray U, Raul SK, Gopinatha VK, Ghosh D, Rangappa KS, Mantelingu K, et al. Identification and characterization of novel SCR7-based small-molecule inhibitor of DNA end-joining, SCR130 and its relevance in cancer therapeutics. Mol Carcinog. 2020;59:618–28.

    Article  CAS  PubMed  Google Scholar 

  83. Riesenberg S, Maricic T. Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat Commun. 2018;9:2164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pinder J, Salsman J, Dellaire G. Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res. 2015;43:9379–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun. 2016;7:10548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yu C, Liu Y, Ma T, Liu K, Xu S, Zhang Y, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 2015;16:142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. 2015;11:316–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Plaza Reyes A, Lanner F. Time matters: gene editing at the mouse 2-cell embryo stage boosts knockin efficiency. Cell Stem Cell. 2018;23:155–7.

    Article  CAS  PubMed  Google Scholar 

  90. Orthwein A, Noordermeer SM, Wilson MD, Landry S, Enchev RI, Sherker A, et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature. 2015;528:422–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Charpentier M, Khedher AHY, Menoret S, Brion A, Lamribet K, Dardillac E, et al. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun. 2018;9:1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tran NT, Bashir S, Li X, Rossius J, Chu VT, Rajewsky K, et al. Enhancement of precise gene editing by the association of Cas9 with homologous recombination factors. Front Genet. 2019;10:365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159:635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Song F, Stieger K. Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Mol Ther Nucleic Acids. 2017;7:53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154:1370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mikuni T, Nishiyama J, Sun Y, Kamasawa N, Yasuda R. High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing. Cell. 2016;165:1803–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miura H, Quadros RM, Gurumurthy CB, Ohtsuka M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc. 2018;13:195–215.

    Article  CAS  PubMed  Google Scholar 

  98. Aird EJ, Lovendahl KN, St Martin A, Harris RS, Gordon WR. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol. 2018;1:54.

  99. Carlson-Stevermer J, Abdeen AA, Kohlenberg L, Goedland M, Molugu K, Lou M, et al. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat Commun. 2017;8:1711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ma M, Zhuang F, Hu X, Wang B, Wen XZ, Ji JF, et al. Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Res. 2017;27:578–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li Y, et al. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife 2018;7.

  102. Chen S, Sun S, Moonen D, Lee C, Lee AY, Schaffer DV, et al. CRISPR-READI: efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Rep. 2019;27:3780–89.e3784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Paulsen BS, Mandal PK, Frock RL, Boyraz B, Yadav R, Upadhyayula S, et al. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing. Nat Biomed Eng. 2017;1:878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ochs F, Somyajit K, Altmeyer M, Rask MB, Lukas J, Lukas C. 53BP1 fosters fidelity of homology-directed DNA repair. Nat Struct Mol Biol. 2016;23:714–21.

    Article  CAS  PubMed  Google Scholar 

  105. Canny MD, Moatti N, Wan LCK, Fradet-Turcotte A, Krasner D, Mateos-Gomez PA, et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol. 2018;36:95–102.

    Article  CAS  PubMed  Google Scholar 

  106. Jayavaradhan R, Pillis DM, Goodman M, Zhang F, Zhang Y, Andreassen PR, et al. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nat Commun. 2019;10:2866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Di Primio C, Galli A, Cervelli T, Zoppe M, Rainaldi G. Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52. Nucleic Acids Res. 2005;33:4639–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Davis L, Maizels N. Two distinct pathways support gene correction by single-stranded donors at DNA Nicks. Cell Rep. 2016;17:1872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Richardson CD, Kazane KR, Feng SJ, Zelin E, Bray NL, Schafer AJ, et al. CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet. 2018;50:1132–9.

    Article  CAS  PubMed  Google Scholar 

  110. Nambiar TS, Billon P, Diedenhofen G, Hayward SB, Taglialatela A, Cai K, et al. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat Commun. 2019;10:3395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Yu S, Song Z, Luo J, Dai Y, Li N. Over-expression of RAD51 or RAD54 but not RAD51/4 enhances extra-chromosomal homologous recombination in the human sarcoma (HT-1080) cell line. J Biotechnol. 2011;154:21–4.

    Article  CAS  PubMed  Google Scholar 

  112. Ye L, Wang C, Hong L, Sun N, Chen D, Chen S, et al. Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discov. 2018;4:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wienert B, Nguyen DN, Guenther A, Feng SJ, Locke MN, Wyman SK, et al. Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair. Nat Commun. 2020;11:2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28:839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34:933–41.

    Article  CAS  PubMed  Google Scholar 

  116. Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell. 2015;163:1515–26.

    Article  CAS  PubMed  Google Scholar 

  117. Allen AG, Chung CH, Atkins A, Dampier W, Khalili K, Nonnemacher MR, et al. Gene editing of HIV-1 co-receptors to prevent and/or cure virus infection. Front Microbiol. 2018;9:2940.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Song B, Fan Y, He W, Zhu D, Niu X, Wang D, et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 2015;24:1053–65.

    Article  CAS  PubMed  Google Scholar 

  119. Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells. 2015;33:1470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, et al. Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther. 2015;23:570–7.

    Article  CAS  PubMed  Google Scholar 

  121. Shim G, Kim D, Park GT, Jin H, Suh SK, Oh YK. Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin. 2017;38:738–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Du J, Shang J, Chen F, Zhang Y, Yin N, Xie T, et al. A CRISPR/Cas9-based screening for non-homologous end joining inhibitors reveals ouabain and penfluridol as radiosensitizers. Mol Cancer Ther. 2018;17:419–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Urbi Roy, Dipayan Ghosh and other members of SCR laboratory for critical reading and comments on the paper. This work was supported by grants from CEFIPRA (IFC/5203-4/2015/131), DAE (21/01/2016-BRNS/35074), DBT Glue-Grant (BT/PR23078/MED/29/1253/2017), IISc-DBT partnership programme (BT/PR27952-INF/22/212/2018) to SCR. UR is supported by Senior Research Fellowship (SRF) from CSIR, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathees C. Raghavan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, U., Raghavan, S.C. Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene 39, 6393–6405 (2020). https://doi.org/10.1038/s41388-020-01445-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01445-2

This article is cited by

Search

Quick links