Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactivation of endothelial cell phosphoinositide 3-kinase β inhibits tumor angiogenesis and tumor growth

Abstract

Angiogenesis inhibitors, such as the receptor tyrosine kinase (RTK) inhibitor sunitinib, target vascular endothelial growth factor (VEGF) signaling in cancers. However, only a fraction of patients respond, and most ultimately develop resistance to current angiogenesis inhibitor therapies. Activity of alternative pro-angiogenic growth factors, acting via RTK or G-protein coupled receptors (GPCR), may mediate VEGF inhibitor resistance. The phosphoinositide 3-kinase (PI3K)β isoform is uniquely coupled to both RTK and GPCRs. We investigated the role of endothelial cell (EC) PI3Kβ in tumor angiogenesis. Pro-angiogenic GPCR ligands were expressed by patient-derived renal cell carcinomas (PD-RCC), and selective inactivation of PI3Kβ reduced PD-RCC-stimulated EC spheroid sprouting. EC-specific PI3Kβ knockout (ΕC-βKO) in mice potentiated the sunitinib-induced reduction in subcutaneous growth of LLC1 and B16F10, and lung metastasis of B16F10 tumors. Compared to single-agent sunitinib treatment, tumors in sunitinib-treated ΕC-βKO mice showed a marked decrease in microvessel density, and reduced new vessel formation. The fraction of perfused mature tumor microvessels was increased in ΕC-βKO mice suggesting immature microvessels were most sensitive to combined sunitinib and PI3Kβ inactivation. Taken together, EC PI3Kβ inactivation with sunitinib inhibition reduces microvessel turnover and decreases heterogeneity of the tumor microenvironment, hence PI3Kβ inhibition may be a useful adjuvant antiangiogenesis therapy with sunitinib.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibition of PI3Kβ decreases sprouting angiogenesis in HUVECs co-cultured with patient-derived renal cancer (PD-RCC) samples.
Fig. 2: Inactivation of endothelial PI3Kβ potentiates sunitinib treatment to delay tumor growth and reduce tumor vessel density.
Fig. 3: Inactivation of endothelial PI3Kβ promotes tumor vessel normalization in sunitinib-treated mice.
Fig. 4: Inactivation of endothelial PI3Kβ reduces tumor angiogenesis.
Fig. 5: Cancer cell epithelial-to-mesenchymal transition (EMT) is reduced in EC-βKO mice.
Fig. 6: Inactivation of endothelial PI3Kβ decreases lung metastases, tumor vessel density, and tumor hypoxia in sunitinib-treated mice.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Google Scholar 

  2. Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell carcinoma. N. Eng. J Med. 2017;376:354–66.

    CAS  Google Scholar 

  3. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380:439–42.

    CAS  PubMed  Google Scholar 

  4. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA. 1996;93:14765–70.

    CAS  PubMed  Google Scholar 

  5. Grunstein J, Roberts WG, Mathieu-Costello O, Hanahan D, Johnson RS. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res. 1999;59:1592–8.

    CAS  PubMed  Google Scholar 

  6. Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 2008;456:814–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17:457–74.

    PubMed  Google Scholar 

  8. Gougis P, Wassermann J, Spano JP, Keynan N, Funck-Brentano C, Salem JE. Clinical pharmacology of anti-angiogenic drugs in oncology. Crit Rev Oncol Hematol. 2017;119:75–93.

    CAS  PubMed  Google Scholar 

  9. Thomas JS, Kabbinavar F. Metastatic clear cell renal cell carcinoma: a review of current therapies and novel immunotherapies. Crit Rev Oncol Hematol. 2015;96:527–33.

    PubMed  Google Scholar 

  10. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8:299–309.

    CAS  PubMed  Google Scholar 

  11. Jimenez-Valerio G, Casanovas O. Antiangiogenic resistance: novel angiogenesis axes uncovered by antiangiogenic therapies research. Curr Drug Targets. 2016;17:1728–34.

    CAS  PubMed  Google Scholar 

  12. Zhou L, Liu XD, Sun M, Zhang X, German P, Bai S, et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene. 2016;35:2687–97.

    CAS  Google Scholar 

  13. Grepin R, Guyot M, Jacquin M, Durivault J, Chamorey E, Sudaka A, et al. Acceleration of clear cell renal cell carcinoma growth in mice following bevacizumab/Avastin treatment: the role of CXCL cytokines. Oncogene. 2012;31:1683–94.

    CAS  PubMed  Google Scholar 

  14. Grepin R, Guyot M, Giuliano S, Boncompagni M, Ambrosetti D, Chamorey E, et al. The CXCL7/CXCR1/2 axis is a key driver in the growth of clear cell renal cell carcinoma. Cancer Res. 2014;74:873–83.

    CAS  PubMed  Google Scholar 

  15. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.

    CAS  PubMed  Google Scholar 

  16. Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry CST, Croix B. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell. 2007;11:539–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl J Med. 2007;356:2271–81.

    CAS  PubMed  Google Scholar 

  18. Ackah E, Yu J, Zoellner S, Iwakiri Y, Skurk C, Shibata R, et al. Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Investig. 2005;115:2119–27.

    CAS  PubMed  Google Scholar 

  19. Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell. 2006;10:159–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A, et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature. 2008;453:662–6.

    CAS  PubMed  Google Scholar 

  21. Huang J, Kontos CD. PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects. J Biol Chem. 2002;277:10760–6.

    CAS  PubMed  Google Scholar 

  22. Hamada K, Sasaki T, Koni PA, Natsui M, Kishimoto H, Sasaki J, et al. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev. 2005;19:2054–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008;27:5486–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol. 2019;20:515–34.

    CAS  PubMed  Google Scholar 

  25. Vanhaesebroeck B, Whitehead MA, Pineiro R. Molecules in medicine mini-review: isoforms of PI3K in biology and disease. J Mol Med. 2016;94:5–11.

    CAS  PubMed  Google Scholar 

  26. Haddad G, Zhabyeyev P, Farhan M, Zhu LF, Rayner DC, Vanhaesebroeck B, et al. PI3K-beta mediates microvascular endothelial repair of thrombotic microagiopathy. Blood. 2014;124:2142–9.

    CAS  PubMed  Google Scholar 

  27. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 2018;21:425–532.

    PubMed  PubMed Central  Google Scholar 

  28. Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE, et al. PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med. 2005;11:507–14.

    CAS  PubMed  Google Scholar 

  29. del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker JS, Larrivee B, et al. Identification and functional analysis of endothelial tip cell-enriched genes. Blood. 2010;116:4025–33.

    PubMed  PubMed Central  Google Scholar 

  30. Strasser GA, Kaminker JS, Tessier-Lavigne M. Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood. 2010;115:5102–10.

    CAS  PubMed  Google Scholar 

  31. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. 1998;393:591–4.

    CAS  PubMed  Google Scholar 

  32. Kasai A, Shintani N, Kato H, Matsuda S, Gomi F, Haba R, et al. Retardation of retinal vascular development in apelin-deficient mice. Arterioscler Thromb Vasc Biol. 2008;28:1717–22.

    CAS  PubMed  Google Scholar 

  33. Ebos JM, Lee CR, Christensen JG, Mutsaers AJ, Kerbel RS. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA. 2007;104:17069–74.

    CAS  PubMed  Google Scholar 

  34. Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Investig. 2003;112:1142–51.

    CAS  PubMed  Google Scholar 

  35. Mancuso MR, Davis R, Norberg SM, O’Brien S, Sennino B, Nakahara T, et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Investig. 2006;116:2610–21.

    CAS  PubMed  Google Scholar 

  36. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–34.

    CAS  PubMed  Google Scholar 

  37. Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol. 2017;241:362–74.

    CAS  PubMed  Google Scholar 

  38. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15:232–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sennino B, McDonald DM. Controlling escape from angiogenesis inhibitors. Nat Rev Cancer. 2012;12:699–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 2018;24:749–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bergerot P, Lamb P, Wang E, Pal SK. Cabozantinib in combination with immunotherapy for advanced renal cell carcinoma and urothelial carcinoma: rationale and clinical evidence. Mol Cancer Ther. 2019;18:2185–93.

    CAS  PubMed  Google Scholar 

  42. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6:553–63.

    CAS  PubMed  Google Scholar 

  43. Matsumoto S, Batra S, Saito K, Yasui H, Choudhuri R, Gadisetti C, et al. Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia. Cancer Res. 2011;71:6350–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Terry S, Faouzi Zaarour R, Hassan Venkatesh G, Francis A, El-Sayed W, Buart S, et al. Role of hypoxic stress in regulating tumor immunogenicity, resistance and plasticity. Int J Mol Sci. 2018;19:3044–63.

    PubMed Central  Google Scholar 

  45. Nieto MA. Context-specific roles of EMT programmes in cancer cell dissemination. Nat Cell Biol. 2017;19:416–8.

    CAS  PubMed  Google Scholar 

  46. Ma S, Pradeep S, Hu W, Zhang D, Coleman R, Sood A. The role of tumor microenvironment in resistance to anti-angiogenic therapy. F1000Res. 2018;7:326.

    PubMed  PubMed Central  Google Scholar 

  47. Lyons YA, Pradeep S, Wu SY, Haemmerle M, Hansen JM, Wagner MJ, et al. Macrophage depletion through colony stimulating factor 1 receptor pathway blockade overcomes adaptive resistance to anti-VEGF therapy. Oncotarget. 2017;8:96496–505.

    PubMed  PubMed Central  Google Scholar 

  48. Shojaei F, Lee JH, Simmons BH, Wong A, Esparza CO, Plumlee PA, et al. HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res. 2010;70:10090–100.

    CAS  PubMed  Google Scholar 

  49. Jahangiri A, De Lay M, Miller LM, Carbonell WS, Hu YL, Lu K, et al. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res. 2013;19:1773–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN, et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 2010;70:1063–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M, et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 2005;65:465–72.

    CAS  PubMed  Google Scholar 

  52. Charo DN, Ho M, Fajardo G, Kawana M, Kundu RK, Sheikh AY, et al. Endogenous regulation of cardiovascular function by apelin-APJ. Am J Physiol Heart Circ Physiol. 2009;297:H1904–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mastrella G, Hou M, Li M, Stoecklein VM, Zdouc N, Volmar MNM, et al. Targeting APLN/APLNR improves antiangiogenic efficiency and blunts proinvasive side effects of VEGFA/VEGFR2 blockade in glioblastoma. Cancer Res. 2019;79:2298–313.

    CAS  PubMed  Google Scholar 

  54. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  55. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15:220–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Soler A, Serra H, Pearce W, Angulo A, Guillermet-Guibert J, Friedman LS, et al. Inhibition of the p110alpha isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis. J Exp Med. 2013;210:1937–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mateo J, Ganji G, Lemech C, Burris HA, Han SW, Swales K, et al. A first-time-in-human study of GSK2636771, a phosphoinositide 3 kinase beta-selective inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2017;23:5981–92.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AKA was supported by a Translational Research Fellowship award from the Department of Medicine at the University of Alberta. Operating funding was provided by the Canadian Cancer Society Research Institute to AGM. The authors acknowledge the technical assistance of Jessica DesAulniers.

Author information

Authors and Affiliations

Authors

Contributions

Concept: AKA, GE, GYO, RBM, AGM; methodology: AKA, PZ; data acquisition: AKA; analysis: AKA, AGM; reagents: BV, RBM; writing: AKA, BV, AGM.

Corresponding author

Correspondence to Allan G. Murray.

Ethics declarations

Conflict of interest

BV is a consultant for Karus Therapeutics (Oxford, UK), iOnctura (Geneva, Switzerland) and Venthera (Palo Alto, US) and has received speaker fees from Gilead (Foster City, US). The other authors declare no conflict of interest relating to this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, A.K., Zhabyeyev, P., Vanhaesebroeck, B. et al. Inactivation of endothelial cell phosphoinositide 3-kinase β inhibits tumor angiogenesis and tumor growth. Oncogene 39, 6480–6492 (2020). https://doi.org/10.1038/s41388-020-01444-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01444-3

This article is cited by

Search

Quick links