Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long noncoding RNA PART1 restrains aggressive gastric cancer through the epigenetic silencing of PDGFB via the PLZF-mediated recruitment of EZH2

Abstract

Current reports refer to the role of long noncoding RNA (lncRNA) prostate androgen-regulated transcript 1 (PART1) as a tumor suppressor in some types of cancer but as an oncogene in other kinds of cancer. In gastric cancer, it had been reported to be downregulated. However, the clinical significance and underlying mechanism of PART1 function in gastric cancer remains undefined. Here, seven differential expression levels of noncoding RNAs (DE-lncRNAs) were screened from gastric cancer through a probe reannotation of a human exon array. PART1 was selected for further study because of its high fold change number. In our cohort, PART1 was identified as a significant downregulated lncRNA in gastric cancer tissues by qPCR and in situ hybridization (ISH), and its low expression was significantly correlated with postoperative metastasis and short overall survival time after surgery. Through the results of gain-of-function experiments, PART1 was confirmed as a tumor suppressor that can decrease not only cell viability, migration, and invasion in vitro but also tumorigenesis and tumor metastasis in vivo. Mechanistically, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) showed that PART1 interacts with androgen receptor (AR), and then, promyelocytic leukemia zinc finger (PLZF) is upregulated in an androgen-independent manner. In a chain reaction, chromatin immunoprecipitation (ChIP) assay additionally illustrated that PLZF upregulation increased the enrichment of EZH2 and H3K27 trimethylation in the platelet-derived growth factor (PDGFB) promotor, thereby inhibition of PDGFB and the subsequent PDGFRβ/PI3K/Akt signaling pathway. Based on these findings, we showed PART1 plays a tumor suppressor role by promoting PLZF expression followed by recruitment of EZH2 to mediate epigenetic PDGFB silencing and downstream PI3K/Akt inhibition, suggesting that PART1 has a key role in restraining the aggressive ability of GC cells and providing a novel perspective on lncRNAs in GC progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DE-lncRNAs identification in GC tissues and low levels of PART1 expression correlate with poor prognosis.
Fig. 2: Forced expression of PART1 inhibits GC cell viability, invasion and migration in vitro and suppresses tumor growth and metastasis in vivo.
Fig. 3: Depletion of PART1 promotes GC cell viability, invasion and migration in vitro and enhances tumor growth and metastasis in vivo.
Fig. 4: PART1 downregulates genes associated with PI3K-Akt signaling but upregulates one tumor suppressor, PLZF.
Fig. 5: Nuclear PART1 binds specifically to AR and stimulates PLZF expression.
Fig. 6: PLZF depletion partially diminishes the PART1-initiated suppression effect on gastric cancer cell invasion.
Fig. 7: Cooccupancy of PLZF and EZH2 mediates the H3K27me3 mark on the chromatin at the PDGFB gene.
Fig. 8: Schematic model of PART1.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Google Scholar 

  2. Sugano K. Screening of gastric cancer in Asia. Best Pract Res. 2015;29:895–905.

    Google Scholar 

  3. Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond). 2019;39:22.

    Google Scholar 

  4. Zong L, Abe M, Seto Y, Ji J. The challenge of screening for early gastric cancer in China. Lancet. 2016;388:2606.

    PubMed  Google Scholar 

  5. Hu L, Zang MD, Wang HX, Zhang BG, Wang ZQ, Fan ZY, et al. G9A promotes gastric cancer metastasis by upregulating ITGB3 in a SET domain-independent manner. Cell death Dis. 2018;9:278.

    PubMed  PubMed Central  Google Scholar 

  6. Thomassen I, van Gestel YR, van Ramshorst B, Luyer MD, Bosscha K, Nienhuijs SW, et al. Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factors. Int J Cancer. 2014;134:622–8.

    CAS  PubMed  Google Scholar 

  7. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154:26–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin C, Yang L. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 2018;28:287–301.

    CAS  PubMed  Google Scholar 

  9. Hu X, Sood AK, Dang CV, Zhang L. The role of long noncoding RNAs in cancer: the dark matter matters. Curr Opin Genet Dev. 2017;48:8–15.

    PubMed  PubMed Central  Google Scholar 

  10. Li H, Yu B, Li J, Su L, Yan M, Zhu Z, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5:2318–29.

    PubMed  PubMed Central  Google Scholar 

  11. Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J. 2012;279:3159–65.

    CAS  PubMed  Google Scholar 

  12. Li Y, Wu Z, Yuan J, Sun L, Lin L, Huang N, et al. Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis. Cancer Lett. 2017;395:31–44.

    CAS  PubMed  Google Scholar 

  13. Li J, Gao J, Tian W, Li Y, Zhang J. Long non-coding RNA MALAT1 drives gastric cancer progression by regulating HMGB2 modulating the miR-1297. Cancer Cell Int. 2017;17:44.

    PubMed  PubMed Central  Google Scholar 

  14. Zhang ZZ, Shen ZY, Shen YY, Zhao EH, Wang M, Wang CJ, et al. HOTAIR long noncoding RNA promotes gastric cancer metastasis through suppression of Poly r(C)-binding protein (PCBP) 1. Mol Cancer Ther. 2015;14:1162–70.

    CAS  PubMed  Google Scholar 

  15. Xue M, Chen LY, Wang WJ, Su TT, Shi LH, Wang L. et al. HOTAIR induces the ubiquitination of Runx3 by interacting with Mex3b and enhances the invasion of gastric cancer cells. Gastric Cancer. 2018;21:756–64.

    CAS  PubMed  Google Scholar 

  16. Zhao Y, Guo Q, Chen J, Hu J, Wang S, Sun Y. Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep. 2014;31:358–64.

    CAS  PubMed  Google Scholar 

  17. Gu L, Lu LS, Zhou DL, Liu ZC. UCA1 promotes cell proliferation and invasion of gastric cancer by targeting CREB1 sponging to miR-590-3p. Cancer Med. 2018;7:1253–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong Y, Wang ZG, Chi TS. Long noncoding RNA Lnc01614 promotes the occurrence and development of gastric cancer by activating EMT pathway. Eur Rev Med Pharmacol Sci. 2018;22:1307–14.

    CAS  PubMed  Google Scholar 

  19. Wu Q, Xiang S, Ma J, Hui P, Wang T, Meng W. et al. Long non-coding RNA CASC15 regulates gastric cancer cell proliferation, migration and epithelial mesenchymal transition by targeting CDKN1A and ZEB1. Mol Oncol. 2018;12:799–813.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu W, He L, Li Y, Tan Y, Zhang F, Xu H. Silencing of lncRNA ZFAS1 inhibits malignancies by blocking Wnt/beta-catenin signaling in gastric cancer cells. Biosci, Biotechnol, Biochem. 2018;82:456–65.

    CAS  Google Scholar 

  21. Chen X, Chen Z, Yu S, Nie F, Yan S, Ma P. et al. Long noncoding RNA LINC01234 functions as a competing endogenous RNA to regulate CBFB expression by sponging miR-204-5p in gastric cancer. Clin Cancer Res. 2018;24:2002–14.

    CAS  PubMed  Google Scholar 

  22. Liu J, Ben Q, Lu E, He X, Yang X, Ma J, et al. Long noncoding RNA PANDAR blocks CDKN1A gene transcription by competitive interaction with p53 protein in gastric cancer. Cell death Dis. 2018;9:168.

    PubMed  PubMed Central  Google Scholar 

  23. Ma H, Ma T, Chen M, Zou Z, Zhang Z. The pseudogene-derived long noncoding RNA SFTA1P suppresses cell proliferation, migration and invasion in gastric cancer. Bioscience Rep. 2018;38:BSR20171193.

    Google Scholar 

  24. Yu Y, Li L, Zheng Z, Chen S, Chen E, Hu Y. Long non-coding RNA linc00261 suppresses gastric cancer progression via promoting Slug degradation. J Cell Mol Med. 2017;21:955–67.

    CAS  PubMed  Google Scholar 

  25. Fei ZH, Yu XJ, Zhou M, Su HF, Zheng Z, Xie CY. Upregulated expression of long non-coding RNA LINC00982 regulates cell proliferation and its clinical relevance in patients with gastric cancer. Tumour Biol. 2016;37:1983–93.

    CAS  PubMed  Google Scholar 

  26. Lin B, White JT, Ferguson C, Bumgarner R, Friedman C, Trask B, et al. PART-1: a novel human prostate-specific, androgen-regulated gene that maps to chromosome 5q12. Cancer Res. 2000;60:858–63.

    CAS  PubMed  Google Scholar 

  27. Ozen M, Navone NM, Multani AS, Troncoso P, Logothetis CJ, Chung LW, et al. Structural alterations of chromosome 5 in twelve human prostate cancer cell lines. Cancer Genet Cytogenet. 1998;106:105–9.

    CAS  PubMed  Google Scholar 

  28. Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS, et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res. 1996;56:3091–102.

    CAS  PubMed  Google Scholar 

  29. Zhang XQ, Sun S, Lam KF, Kiang KM, Pu JK, Ho AS, et al. A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol Dis. 2013;58:123–31.

    CAS  PubMed  Google Scholar 

  30. Hu Y, Ma Z, He Y, Liu W, Su Y, Tang Z. PART-1 functions as a competitive endogenous RNA for promoting tumor progression by sponging miR-143 in colorectal cancer. Biochem Biophys Res Commun. 2017;490:317–23.

    CAS  PubMed  Google Scholar 

  31. Zhou T, Wu L, Ma N, Tang F, Zong Z, Chen S. LncRNA PART1 regulates colorectal cancer via targeting miR-150-5p/miR-520h/CTNNB1 and activating Wnt/beta-catenin pathway. Int J Biochem Cell Biol. 2019;118:105637.

    PubMed  Google Scholar 

  32. Li M, Zhang W, Zhang S, Wang C, Lin Y. PART1 expression is associated with poor prognosis and tumor recurrence in stage I-III non-small cell lung cancer. J Cancer. 2017;8:1795–800.

    PubMed  PubMed Central  Google Scholar 

  33. Zhu D, Yu Y, Wang W, Wu K, Liu D, Yang Y, et al. Long noncoding RNA PART1 promotes progression of non-small cell lung cancer cells via JAK-STAT signaling pathway. Cancer Med. 2019;8:6064–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun M, Geng D, Li S, Chen Z, Zhao W. LncRNA PART1 modulates toll-like receptor pathways to influence cell proliferation and apoptosis in prostate cancer cells. Biol Chem. 2018;399:387–95.

    CAS  PubMed  Google Scholar 

  35. Gu W, Ren JH, Zheng X, Hu XY, Hu MJ. Comprehensive analysis of expression profiles of long noncoding RNAs with associated ceRNA network involved in gastric cancer progression. Mol Med Rep. 2019;20:2209–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin Y, Nenseth HZ, Saatcioglu F. Role of PLZF as a tumor suppressor in prostate cancer. Oncotarget. 2017;8:71317–24.

    PubMed  PubMed Central  Google Scholar 

  37. Xia N, Cui J, Zhu M, Xing R, Lu Y. Androgen receptor variant 12 promotes migration and invasion by regulating MYLK in gastric cancer. J Pathol. 2019;248:304–315.

    CAS  PubMed  Google Scholar 

  38. Kominea A, Konstantinopoulos PA, Kapranos N, Vandoros G, Gkermpesi M, Andricopoulos P, et al. Androgen receptor (AR) expression is an independent unfavorable prognostic factor in gastric cancer. J Cancer Res Clin Oncol. 2004;130:253–8.

    CAS  PubMed  Google Scholar 

  39. Jiang F, Wang Z. Identification and characterization of PLZF as a prostatic androgen-responsive gene. Prostate. 2004;59:426–35.

    CAS  PubMed  Google Scholar 

  40. Hsieh CL, Botta G, Gao S, Li T, Van Allen EM, Treacy DJ, et al. PLZF, a tumor suppressor genetically lost in metastatic castration-resistant prostate cancer, is a mediator of resistance to androgen deprivation therapy. Cancer Res. 2015;75:1944–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen S, Dong S, Li Z, Guo X, Zhang N, Yu B, et al. Atorvastatin calcium inhibits PDGF-betabeta-induced proliferation and migration of VSMCs Through the G0/G1 cell cycle arrest and suppression of activated PDGFRbeta-PI3K-Akt signaling cascade. Cell Physiol Biochem. 2017;44:215–28.

    PubMed  Google Scholar 

  42. Wang Y, Appiah-Kubi K, Lan T, Wu M, Pang J, Qian H, et al. PKG II inhibits PDGF-BB triggered biological activities by phosphorylating PDGFRbeta in gastric cancer cells. Cell Biol Int. 2018;42:1358–69.

    CAS  PubMed  Google Scholar 

  43. Guo H, German P, Bai S, Barnes S, Guo W, Qi X, et al. The PI3K/AKT pathway and renal cell carcinoma. J Genet Genom. 2015;42:343–53.

    Google Scholar 

  44. Koubi M, Poplineau M, Vernerey J, N’Guyen L, Tiberi G, Garciaz S, et al. Regulation of the positive transcriptional effect of PLZF through a non-canonical EZH2 activity. Nucleic Acids Res. 2018;46:3339–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. He XJ, Ma YY, Yu S, Jiang XT, Lu YD, Tao L, et al. Up-regulated miR-199a-5p in gastric cancer functions as an oncogene and targets klotho. BMC Cancer. 2014;14:218.

    PubMed  PubMed Central  Google Scholar 

  46. Izumi K, Zheng Y, Li Y, Zaengle J, Miyamoto H. Epidermal growth factor induces bladder cancer cell proliferation through activation of the androgen receptor. Int J Oncol. 2012;41:1587–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Y, Wang LN, Lin YN, Xing YX, Shi Y, Zhao J, et al. The novel long noncoding RNA LOC283070 is involved in the transition of LNCaP cells into androgen-independent cells via its interaction with PHB2. Asian J Androl. 2018;20:511–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang JB, Jin Y, Wu P, Liu Y, Zhao WJ, Chen JF, et al. Tumor suppressor PLZF regulated by lncRNA ANRIL suppresses proliferation and epithelial mesenchymal transformation of gastric cancer cells. Oncol Rep. 2019;41:1007–18.

    CAS  PubMed  Google Scholar 

  49. Liu TM, Lee EH, Lim B, Shyh-Chang N. Concise review: balancing stem cell self-renewal and differentiation with PLZF. Stem Cells (Dayt, Ohio). 2015;34:277–87.

    Google Scholar 

  50. Wang G, Shi B, Fu Y, Zhao S, Qu K, Guo Q, et al. Hypomethylated gene NRP1 is co-expressed with PDGFRB and associated with poor overall survival in gastric cancer patients. Biomed Pharmacother. 2019;111:1334–41.

    CAS  PubMed  Google Scholar 

  51. Peng Y, Guo JJ, Liu YM, Wu XL. MicroRNA-34A inhibits the growth, invasion and metastasis of gastric cancer by targeting PDGFR and MET expression. Biosci Rep. 2014;34:e00112.

    PubMed  PubMed Central  Google Scholar 

  52. Guo Y, Yin J, Zha L, Wang Z. Clinicopathological significance of platelet-derived growth factor B, platelet-derived growth factor receptor-beta, and E-cadherin expression in gastric carcinoma. Contemp Oncol (Pozn). 2013;17:150–5.

    CAS  Google Scholar 

  53. Kodama M, Kitadai Y, Sumida T, Ohnishi M, Ohara E, Tanaka M, et al. Expression of platelet-derived growth factor (PDGF)-B and PDGF-receptor beta is associated with lymphatic metastasis in human gastric carcinoma. Cancer Sci. 2010;101:1984–9.

    CAS  PubMed  Google Scholar 

  54. Li QL, Gu FM, Wang Z, Jiang JH, Yao LQ, Tan CJ, et al. Activation of PI3K/AKT and MAPK pathway through a PDGFRbeta-dependent feedback loop is involved in rapamycin resistance in hepatocellular carcinoma. PLoS ONE. 2012;7:e33379.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wen W, Ding J, Sun W, Fu J, Chen Y, Wu K. et al. Cyclin G1-mediated epithelial-mesenchymal transition via phosphoinositide 3-kinase/Akt signaling facilitates liver cancer progression. Hepatology (Baltimore. Md.). 2012;55:1787–98.

    CAS  Google Scholar 

  56. Cao WJ, Wu HL, He BS, Zhang YS, Zhang ZY. Analysis of long non-coding RNA expression profiles in gastric cancer. World J Gastroenterol. 2013;19:3658–64.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81772632, 81802943), Science Foundation of Peking University Cancer Hospital 2020-9, Beijing outstanding talent training program (No. 2018000021469G268), the interdisciplinary medicine Seed Fund of Peking University (No. BMU2018MX019), Special funds of the Ministry of Finance for Reform and Development and ‘San Ming’ Project of Shenzhen city (no. SZSM 201612051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Jia, L. Zhang or J. Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Wang, S., Meng, J. et al. Long noncoding RNA PART1 restrains aggressive gastric cancer through the epigenetic silencing of PDGFB via the PLZF-mediated recruitment of EZH2. Oncogene 39, 6513–6528 (2020). https://doi.org/10.1038/s41388-020-01442-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01442-5

This article is cited by

Search

Quick links