Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extracellular ATP promotes breast cancer invasion and chemoresistance via SOX9 signaling

Abstract

Our previous research demonstrated that extracellular adenosine 5′-triphosphate (ATP) could promote breast cancer cell invasion. However, the impact of extracellular ATP on chemoresistance and the mechanisms behind ATP pro-invasion and pro-chemoresistance remain unclear. Here we aimed to determine the molecules or signaling pathways involved. cDNA microarray was performed to identify the differentially expressed genes before and after ATP treatment. As a result, Sex-determining region Y-box 9 (SOX9) was up-regulated after ATP treatment in breast cancer cells. In vitro invasion and migration assays demonstrated that knocking down SOX9 attenuated ATP-driven invasive capability. Mass spectrometry and co-IP revealed that SOX9 interacted with Janus kinase 1 (JAK1). Afterward, IL-6-JAK1-STAT3 signaling was demonstrated to promote SOX9 expression and invasion following ATP treatment. Notably, ATP-IL-6-SOX9 signaling was shown to stimulate chemoresistance in breast cancer cells. ChIP assays identified some potential SOX9 target genes, among which carcinoembryonic antigen-related cell adhesion molecule 5/6 (CEACAM5/6) was demonstrated to mediate ATP pro-invasive function, while ATP-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) mediated ATP-driven chemoresistance. In addition, SOX9-knockdown and apyrase (an ATP hydrolase)-treated MDA-MB-231 cells illustrated decreased tumor growth and enhanced drug sensitivity in nude mice. In vitro spheroid formation assays also proved the significance of ATP-SOX9 in mediating chemoresistance. Moreover, molecules involved in ATP-SOX9 signaling were up-regulated in human breast carcinoma specimens and were associated with poor prognosis. Altogether, SOX9 signaling is vital in ATP-driven invasion and chemoresistance, which may serve as a potential target for breast cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The up-regulation of SOX9 contributes to ATP-promoted breast cancer cell invasion in vitro.
Fig. 2: IL-6-JAK1-STAT3 is involved in ATP-SOX9 signaling and cancer cell invasion.
Fig. 3: IL-6-JAK1-STAT3-SOX9 axis is required for ATP-driven chemoresistance in breast cancer cells.
Fig. 4: ATP promotes invasion and chemoresistance via SOX9 targets CEACAM5/6, ABCB1, and ABCG2, respectively.
Fig. 5: ATP-SOX9 signaling promotes xenograft tumor growth, metastasis, and chemoresistance in vivo.
Fig. 6: ATP-SOX9 signaling mediates spheroid formation and chemoresistance in vitro.
Fig. 7: ATP-SOX9 axis is associated with clinical breast cancer progression.
Fig. 8: The proposed model for the ATP-SOX9 signaling.

Similar content being viewed by others

References

  1. Patel A, Malinovska L, Saha S, Wang J, Alberti S, Krishnan Y, et al. ATP as a biological hydrotrope. Science. 2017;356:753–6. https://doi.org/10.1126/science.aaf6846

    Article  CAS  PubMed  Google Scholar 

  2. Pearson RA, Dale N, Llaudet E, Mobbs P. ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron. 2005;46:731–44. https://doi.org/10.1016/j.neuron.2005.04.024

    Article  CAS  PubMed  Google Scholar 

  3. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, et al. ATP drives lamina propria T(H)17 cell differentiation. Nature. 2008;455:808–12. https://doi.org/10.1038/nature07240

    Article  CAS  PubMed  Google Scholar 

  4. McKenney RJ, Huynh W, Tanenbaum ME, Bhabha G, Vale RD. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science. 2014;345:337–41. https://doi.org/10.1126/science.1254198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 1997;57:1835–40

    CAS  PubMed  Google Scholar 

  6. Galluzzi L, Bravo-San Pedro JM, Kroemer G. Necrosis: linking the inflammasome to inflammation. Cell Rep. 2015;11:1501–2. https://doi.org/10.1016/j.celrep.2015.05.041

    Article  CAS  PubMed  Google Scholar 

  7. Di Virgilio F, Adinolfi E. Extracellular purines, purinergic receptors and tumor growth. Oncogene. 2017;36:293–303. https://doi.org/10.1038/onc.2016.206

    Article  CAS  PubMed  Google Scholar 

  8. Antonioli L, Blandizzi C, Pacher P, Hasko G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer. 2013;13:842–57. https://doi.org/10.1038/nrc3613

    Article  CAS  PubMed  Google Scholar 

  9. Di Virgilio F. Purines, purinergic receptors, and cancer. Cancer Res. 2012;72:5441–7. https://doi.org/10.1158/0008-5472.CAN-12-1600

    Article  CAS  PubMed  Google Scholar 

  10. Chen L, He HY, Li HM, Zheng J, Heng WJ, You JF, et al. ERK1/2 and p38 pathways are required for P2Y receptor-mediated prostate cancer invasion. Cancer Lett. 2004;215:239–47. https://doi.org/10.1016/j.canlet.2004.05.023

    Article  CAS  PubMed  Google Scholar 

  11. Li WH, Qiu Y, Zhang HQ, Liu Y, You JF, Tian XX, et al. P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells. Br J Cancer. 2013;109:1666–75. https://doi.org/10.1038/bjc.2013.484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li WH, Qiu Y, Zhang HQ, Tian XX, Fang WG. P2Y2 receptor and EGFR cooperate to promote prostate cancer cell invasion via ERK1/2 pathway. PLoS ONE. 2015;10:e0133165. https://doi.org/10.1371/journal.pone.0133165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qiu Y, Li WH, Zhang HQ, Liu Y, Tian XX, Fang WG. P2X7 mediates ATP-driven invasiveness in prostate cancer cells. PLoS ONE. 2014;9:e114371. https://doi.org/10.1371/journal.pone.0114371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang JL, Liu Y, Yang H, Zhang HQ, Tian XX, Fang WG. ATP-P2Y2-beta-catenin axis promotes cell invasion in breast cancer cells. Cancer Sci. 2017;108:1318–27. https://doi.org/10.1111/cas.13273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiu Y, Liu Y, Li WH, Zhang HQ, Tian XX, Fang WG. P2Y2 receptor promotes the migration and invasion of breast cancer cells via EMT-related genes Snail and E-cadherin. Oncol Rep. 2018;39:138–50. https://doi.org/10.3892/or.2017.6081

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Geng YH, Yang H, Yang H, Zhou YT, Zhang HQ, et al. Extracellular ATP drives breast cancer cell migration and metastasis via S100A4 production by cancer cells and fibroblasts. Cancer Lett. 2018;430:1–10. https://doi.org/10.1016/j.canlet.2018.04.043

    Article  CAS  PubMed  Google Scholar 

  17. Yang H, Geng YH, Wang P, Zhou YT, Yang H, Huo YF, et al. Extracellular ATP promotes breast cancer invasion and epithelial-mesenchymal transition via hypoxia-inducible factor 2alpha signaling. Cancer Sci. 2019;110:2456–70. https://doi.org/10.1111/cas.14086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Liu J, Pang P, Krautzberger AM, Reginensi A, Akiyama H, et al. Sox9 activation highlights a cellular pathway of renal repair in the acutely injured mammalian kidney. Cell Rep. 2015;12:1325–38. https://doi.org/10.1016/j.celrep.2015.07.034

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L, et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell. 2015;27:193–210. https://doi.org/10.1016/j.ccell.2014.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Larsimont JC, Youssef KK, Sanchez-Danes A, Sukumaran V, Defrance M, Delatte B, et al. Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion. Cell Stem Cell. 2015;17:60–73. https://doi.org/10.1016/j.stem.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  21. Cai C, Wang H, He HH, Chen S, He L, Ma F, et al. ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. J Clin Investig. 2013;123:1109–22. https://doi.org/10.1172/JCI66666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen H, Garbutt CC, Spentzos D, Choy E, Hornicek FJ, Duan Z. Expression and therapeutic potential of SOX9 in Chordoma. Clin Cancer Res. 2017;23:5176–86. https://doi.org/10.1158/1078-0432.CCR-17-0177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang H, Leav I, Ibaragi S, Wegner M, Hu GF, Lu ML, et al. SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Res. 2008;68:1625–30. https://doi.org/10.1158/0008-5472.CAN-07-5915

    Article  CAS  PubMed  Google Scholar 

  24. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 2014;346:1480–6. https://doi.org/10.1126/science.1254721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Verhalen B, Dastvan R, Thangapandian S, Peskova Y, Koteiche HA, Nakamoto RK, et al. Energy transduction and alternating access of the mammalian ABC transporter P-glycoprotein. Nature. 2017;543:738–41. https://doi.org/10.1038/nature21414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Li Y, Qian Y, Cao Y, Shriwas P, Zhang H, et al. Extracellular ATP, as an energy and phosphorylating molecule, induces different types of drug resistances in cancer cells through ATP internalization and intracellular ATP level increase. Oncotarget. 2017;8:87860–77. https://doi.org/10.18632/oncotarget.21231

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–30. https://doi.org/10.1038/nature16064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527:472–6. https://doi.org/10.1038/nature15748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809. https://doi.org/10.1038/nrc2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Putoczki T, Ernst M. More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J Leukoc Biol. 2010;88:1109–17. https://doi.org/10.1189/jlb.0410226

    Article  CAS  PubMed  Google Scholar 

  31. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48. https://doi.org/10.1038/nrclinonc.2018.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zalzali H, Naudin C, Bastide P, Quittau-Prevostel C, Yaghi C, Poulat F, et al. CEACAM1, a SOX9 direct transcriptional target identified in the colon epithelium. Oncogene. 2008;27:7131–8. https://doi.org/10.1038/onc.2008.331

    Article  CAS  PubMed  Google Scholar 

  33. Prevostel C, Blache P. The dose-dependent effect of SOX9 and its incidence in colorectal cancer. Eur J Cancer. 2017;86:150–7. https://doi.org/10.1016/j.ejca.2017.08.037

    Article  CAS  PubMed  Google Scholar 

  34. Leung CO, Mak WN, Kai AK, Chan KS, Lee TK, Ng IO, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/beta-catenin signaling. Oncotarget. 2016;7:29371–86. https://doi.org/10.18632/oncotarget.8835

    Article  PubMed  PubMed Central  Google Scholar 

  35. Solini A, Chiozzi P, Morelli A, Fellin R, Di Virgilio F. Human primary fibroblasts in vitro express a purinergic P2X7 receptor coupled to ion fluxes, microvesicle formation and IL-6 release. J Cell Sci. 1999;112(Pt 3):297–305

    CAS  PubMed  Google Scholar 

  36. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31. https://doi.org/10.1007/s10549-009-0674-9

    Article  CAS  PubMed  Google Scholar 

  37. Nagy A, Lanczky A, Menyhart O, Gyorffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 2018;8:9227 https://doi.org/10.1038/s41598-018-27521-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Auger R, Motta I, Benihoud K, Ojcius DM, Kanellopoulos JM. A role for mitogen-activated protein kinase(Erk1/2) activation and non-selective pore formation in P2X7 receptor-mediated thymocyte death. J Biol Chem. 2005;280:28142–51. https://doi.org/10.1074/jbc.M501290200

    Article  CAS  PubMed  Google Scholar 

  39. Gilbert SM, Oliphant CJ, Hassan S, Peille AL, Bronsert P, Falzoni S, et al. ATP in the tumour microenvironment drives expression of nfP2X7, a key mediator of cancer cell survival. Oncogene 2018. https://doi.org/10.1038/s41388-018-0426-6

  40. Roger S, Pelegrin P. P2X7 receptor antagonism in the treatment of cancers. Expert Opin Investig Drugs. 2011;20:875–80. https://doi.org/10.1517/13543784.2011.583918

    Article  CAS  PubMed  Google Scholar 

  41. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009;15:1170–8. https://doi.org/10.1038/nm.2028

    Article  CAS  PubMed  Google Scholar 

  42. Di Virgilio F, Falzoni S, Giuliani AL, Adinolfi E. P2 receptors in cancer progression and metastatic spreading. Curr Opin Pharm. 2016;29:17–25. https://doi.org/10.1016/j.coph.2016.05.001

    Article  CAS  Google Scholar 

  43. Fang WG, Pirnia F, Bang YJ, Myers CE, Trepel JB. P2-purinergic receptor agonists inhibit the growth of androgen-independent prostate carcinoma cells. J Clin Investig. 1992;89:191–6. https://doi.org/10.1172/JCI115562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xia M, Zhu Y. The regulation of Sox2 and Sox9 stimulated by ATP in spinal cord astrocytes. J Mol Neurosci. 2015;55:131–40. https://doi.org/10.1007/s12031-014-0393-5

    Article  CAS  PubMed  Google Scholar 

  45. Shan L, Zhou X, Liu X, Wang Y, Su D, Hou Y, et al. FOXK2 elicits massive transcription repression and suppresses the hypoxic response and breast cancer carcinogenesis. Cancer Cell. 2016;30:708–22. https://doi.org/10.1016/j.ccell.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  46. Wilson M, Koopman P. Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev. 2002;12:441–6

    Article  CAS  PubMed  Google Scholar 

  47. Qiu M, Li G, Wang P, Li X, Lai F, Luo R, et al. aarF domain containing kinase 5 gene promotes invasion and migration of lung cancer cells through ADCK5-SOX9-PTTG1 pathway. Exp Cell Res. 2020;392:112002. https://doi.org/10.1016/j.yexcr.2020.112002

    Article  CAS  PubMed  Google Scholar 

  48. Santos JC, Carrasco-Garcia E, Garcia-Puga M, Aldaz P, Montes M, Fernandez-Reyes M, et al. SOX9 elevation acts with canonical WNT signaling to drive gastric cancer progression. Cancer Res. 2016;76:6735–46. https://doi.org/10.1158/0008-5472.CAN-16-1120

    Article  CAS  PubMed  Google Scholar 

  49. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446–51. https://doi.org/10.1038/nature22364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeng H, Qu J, Jin N, Xu J, Lin C, Chen Y, et al. Feedback activation of leukemia inhibitory factor receptor limits response to histone deacetylase inhibitors in breast cancer. Cancer Cell. 2016;30:459–73. https://doi.org/10.1016/j.ccell.2016.08.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to XXT and WGF from the National Natural Science Foundation of China (No 81872382 and 81621063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Gang Fang or Xin-Xia Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Geng, YH., Wang, P. et al. Extracellular ATP promotes breast cancer invasion and chemoresistance via SOX9 signaling. Oncogene 39, 5795–5810 (2020). https://doi.org/10.1038/s41388-020-01402-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01402-z

This article is cited by

Search

Quick links