Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LASP1 interacts with N-WASP to activate the Arp2/3 complex and facilitate colorectal cancer metastasis by increasing tumour budding and worsening the pattern of invasion

Abstract

LIM and SH3 protein 1 (LASP1) is a metastasis-related protein reported to enhance tumour progression in colorectal cancer (CRC). However, the underlying mechanism is still elusive. As the major biological and pathological functions of LASP1 are accomplished by its LIM and SH3 domains via protein–protein interactions, a yeast two-hybrid system was employed to screen novel LASP1-interacting proteins. N-WASP, a member of the Wiskott–Aldrich syndrome protein (WASP) family, was screened and identified as a LASP1-interacting protein overexpressed in CRC tissues. N-WASP could stimulate the migration and invasion of CRC cells in vitro and increase the formation of subcutaneous tumours, mesenteric implanted tumours and hepatic metastatic tumours. N-WASP could interact with and activate the Arp2/3 complex to stimulate actin polymerization, thus changing the migratory and invasive capabilities of CRC cells. The interaction of LASP1 with N-WASP did not influence the expression of N-WASP but recovered the reduced actin polymerization induced by N-WASP silencing. High N-WASP expression was detected in most clinical colorectal samples, and it was positively correlated with the expression of LASP1 and ARP3, as well as the tumour budding and pattern of invasion, but negatively correlated with host lymphocytic response. Our study suggests a new mechanism for LASP1-mediated CRC metastasis determined by exploring LASP1-interacting proteins and identifies N-WASP as a potential therapeutic target for CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: N-WASP interacts with LASP1 in CRC.
Fig. 2: N-WASP stimulates the migration and invasion of CRC cells.
Fig. 3: N-WASP interacts with LASP1 to stimulate the actin polymerization.
Fig. 4: N-WASP interacts with ARP3 in CRC cells.
Fig. 5: The clinical significance of N-WASP.
Fig. 6: Sketch map illustrated the mechanism of N-WASP in LASP medicated CRC metastasis.

Similar content being viewed by others

References

  1. Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer. 2018;124:2785–800.

    Article  Google Scholar 

  2. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–91.

    Article  Google Scholar 

  3. Tomasetto C, Moog-Lutz C, Regnier CH, Schreiber V, Basset P, Rio MC. Lasp-1 (MLN 50) defines a new LIM protein subfamily characterized by the association of LIM and SH3 domains. FEBS Lett. 1995;373:245–9.

    Article  CAS  Google Scholar 

  4. Duvall-Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122–33.

    Article  CAS  Google Scholar 

  5. Grunewald TG, Kammerer U, Schulze E, Schindler D, Honig A, Zimmer M, et al. Silencing of LASP-1 influences zyxin localization, inhibits proliferation and reduces migration in breast cancer cells. Exp Cell Res. 2006;312:974–82.

    Article  CAS  Google Scholar 

  6. Grunewald TG, Kammerer U, Winkler C, Schindler D, Sickmann A, Honig A, et al. Overexpression of LASP-1 mediates migration and proliferation of human ovarian cancer cells and influences zyxin localisation. Br J Cancer. 2007;96:296–305.

    Article  CAS  Google Scholar 

  7. Sun W, Guo L, Shao G, Liu X, Guan Y, Su L, et al. Suppression of LASP-1 attenuates the carcinogenesis of prostatic cancer cell lines: Key role of the NF-kappaB pathway. Oncol Rep. 2017;37:341–7.

    Article  Google Scholar 

  8. Salvi A, Bongarzone I, Ferrari L, Abeni E, Arici B, De Bortoli M, et al. Molecular characterization of LASP-1 expression reveals vimentin as its new partner in human hepatocellular carcinoma cells. Int J Oncol. 2015;46:1901–12.

    Article  CAS  Google Scholar 

  9. Zhao T, Ren H, Li J, Chen J, Zhang H, Xin W, et al. LASP1 is a HIF1alpha target gene critical for metastasis of pancreatic cancer. Cancer Res. 2015;75:111–9.

    Article  CAS  Google Scholar 

  10. Gao Q, Tang L, Wu L, Li K, Wang H, Li W, et al. LASP1 promotes nasopharyngeal carcinoma progression through negatively regulation of the tumor suppressor PTEN. Cell Death Dis. 2018;9:393.

    Article  Google Scholar 

  11. Zhao L, Wang H, Liu C, Liu Y, Wang X, Wang S, et al. Promotion of colorectal cancer growth and metastasis by the LIM and SH3 domain protein 1. Gut. 2010;59:1226–35.

    Article  CAS  Google Scholar 

  12. Wang H, Shi J, Luo Y, Liao Q, Niu Y, Zhang F, et al. LIM and SH3 protein 1 induces TGFbeta-mediated epithelial-mesenchymal transition in human colorectal cancer by regulating S100A4 expression. Clin Cancer Res. 2014;20:5835–47.

    Article  CAS  Google Scholar 

  13. Niu Y, Shao Z, Wang H, Yang J, Zhang F, Luo Y, et al. LASP1-S100A11 axis promotes colorectal cancer aggressiveness by modulating TGFbeta/Smad signaling. Sci Rep. 2016;6:26112.

    Article  CAS  Google Scholar 

  14. Shao Z, Cai Y, Xu L, Yao X, Shi J, Zhang F, et al. Loss of the 14-3-3sigma is essential for LASP1-mediated colorectal cancer progression via activating PI3K/AKT signaling pathway. Sci Rep. 2016;6:25631.

    Article  CAS  Google Scholar 

  15. Zhou R, Shao Z, Liu J, Zhan W, Gao Q, Pan Z, et al. COPS5 and LASP1 synergistically interact to downregulate 14-3-3sigma expression and promote colorectal cancer progression via activating PI3K/AKT pathway. Int J Cancer. 2018;142:1853–64.

    Article  CAS  Google Scholar 

  16. Lane J, Martin T, Weeks HP, Jiang WG. Structure and role of WASP and WAVE in Rho GTPase signalling in cancer. Cancer Genom Proteom. 2014;11:155–65.

    Google Scholar 

  17. Miki H, Miura K, Takenawa T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 1996;15:5326–35.

    Article  Google Scholar 

  18. Pollard TD, Beltzner CC. Structure and function of the Arp2/3 complex. Curr Opin Struct Biol. 2002;12:768–74.

    Article  CAS  Google Scholar 

  19. Prall F, Nizze H, Barten M. Tumour budding as prognostic factor in stage I/II colorectal carcinoma. Histopathology. 1994;78:635–44.

    Google Scholar 

  20. Lugli A, Kirsch R, Ajioka Y, Bosman F, Cathomas G, Dawson H, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 2017;30:1299–311.

    Article  Google Scholar 

  21. Caie PD, Turnbull AK, Farrington SM, Oniscu A, Harrison DJ. Quantification of tumour budding, lymphatic vessel density and invasion through image analysis in colorectal cancer. J Transl Med. 2014;12:156.

    Article  Google Scholar 

  22. Wang W, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis JS. Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol. 2005;15:138–45.

    Article  CAS  Google Scholar 

  23. Rachlin AS, Otey CA. Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. J Cell Sci. 2006;119:995–1004.

    Article  CAS  Google Scholar 

  24. Orth MF, Cazes A, Butt E, Grunewald TG. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein. Oncotarget. 2015;6:26–42.

    Article  Google Scholar 

  25. Kurisu S, Takenawa T. The WASP and WAVE family proteins. Genome Biol. 2009;10:226.

    Article  Google Scholar 

  26. Panchal SC, Kaiser DA, Torres E, Pollard TD, Rosen MK. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nat Struct Biol. 2003;10:591–8.

    Article  CAS  Google Scholar 

  27. Co C, Wong DT, Gierke S, Chang V, Taunton J. Mechanism of actin network attachment to moving membranes: barbed end capture by N-WASP WH2 domains. Cell. 2007;128:901–13.

    Article  CAS  Google Scholar 

  28. Li H, Zhong A, Li S, Meng X, Wang X, Xu F, et al. The integrated pathway of TGFbeta/Snail with TNFalpha/NFkappaB may facilitate the tumor-stroma interaction in the EMT process and colorectal cancer prognosis. Sci Rep. 2017;7:4915.

    Article  Google Scholar 

  29. Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994;78:635–44.

    Article  CAS  Google Scholar 

  30. Nakagawa H, Terasaki AG, Suzuki H, Ohashi K, Miyamoto S. Short-term retention of actin filament binding proteins on lamellipodial actin bundles. FEBS Lett. 2006;580:3223–8.

    Article  CAS  Google Scholar 

  31. Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 2007;36:451–77.

    Article  CAS  Google Scholar 

  32. Takano K, Toyooka K, Suetsugu S. EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J. 2008;27:2817–28.

    Article  CAS  Google Scholar 

  33. Carlier MF, Nioche P, Broutin-L’Hermite I, Boujemaa R, Le Clainche C, Egile C, et al. GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. J Biol Chem. 2000;275:21946–52.

    Article  CAS  Google Scholar 

  34. Rohatgi R, Nollau P, Ho HY, Kirschner MW, Mayer BJ. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem. 2001;276:26448–52.

    Article  CAS  Google Scholar 

  35. van Wyk HC, Roseweir A, Alexander P, Park JH, Horgan PG, McMillan DC, et al. The relationship between tumor budding, tumor microenvironment, and survival in patients with primary operable colorectal cancer. Ann Surg Oncol. 2019;26:4397–404.

    Article  Google Scholar 

  36. Chatterjee D, Bansal V, Malik V, Bhagat R, Punia RS, Handa U, et al. Tumor budding and worse pattern of invasion can predict nodal metastasis in oral cancers and associated with poor survival in early-stage tumors. Ear Nose Throat J. 2019;98:E112–9.

    Article  Google Scholar 

  37. Heerema MG, Melchers LJ, Roodenburg JL, Schuuring E, de Bock GH, van der Vegt B. Reproducibility and prognostic value of pattern of invasion scoring in low-stage oral squamous cell carcinoma. Histopathology. 2016;68:388–97.

    Article  Google Scholar 

  38. Li Y, Bai S, Carroll W, Dayan D, Dort JC, Heller K, et al. Validation of the risk model: high-risk classification and tumor pattern of invasion predict outcome for patients with low-stage oral cavity squamous cell carcinoma. Head Neck Pathol. 2013;7:211–23.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81773082, 81702903, 81872423, 81972813), Guangdong Natural Science Foundation (2018B030311036, 2019A1515010974) and Fork Ying Tung Education Foundation (161035).

Author information

Authors and Affiliations

Authors

Contributions

LZ led study design and prepared the paper; P-PY, JL and RZ carried out the experiments; CL, S-BY, and SY assisted in tissue sample collection and clinical analysis; K-HW and J-YZ performed statistical analysis; L-JX, and HW performed data analysis and interpretation.

Corresponding author

Correspondence to Liang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, P., Liu, J., Zhou, R. et al. LASP1 interacts with N-WASP to activate the Arp2/3 complex and facilitate colorectal cancer metastasis by increasing tumour budding and worsening the pattern of invasion. Oncogene 39, 5743–5755 (2020). https://doi.org/10.1038/s41388-020-01397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01397-7

This article is cited by

Search

Quick links