Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Listeria-based hepatocellular carcinoma vaccine facilitates anti-PD-1 therapy by regulating macrophage polarization

Abstract

Recently, patients with advanced cancers have been benefited greatly from immune checkpoint blockade immunotherapy. However, immune checkpoint blockade is still suboptimal in HCC treatment and more immune modifications are needed to achieve an efficient therapeutic goal. Here, we investigated the combined administration of a Listeria-based HCC vaccine, Lmdd-MPFG, and the anti-PD-1 immune checkpoint blockade antibody. We found that Lmdd-MPFG promoted the expression of PD-L1 in HCC cells but resensitized the tumor local T cell to respond to the anti-PD-1 immunotherapy. Mechanistically, the Lmdd-MPFG vaccine activates the NF-κB pathway in the tumor-associated macrophages (TAMs) through the TLR2 and MyD88 pathway, and recruits p62 to activate the autophagy pathway. The overall effect is skewing the TAMs from M2-polarized TAMs into the M1-polarized TAMs. Most importantly, it skewed the cytokine profiles into antitumor one in the tumor microenvironment (TME). This change restores the T-cell reactivity to the anti-PD-1 blockade. Our results suggested that Lmdd-MPFG combined with PD-1 blockade exerted synergistic antitumor effects through modifying TAMs in the TME and removing T-cell inhibitory signals, thereby providing a new potential strategy for HCC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14.

    PubMed  Google Scholar 

  2. Makarova-Rusher OV, Medina-Echeverz J, Duffy AG, Greten TF. The yin and yang of evasion and immune activation in HCC. J Hepatol. 2015;62:1420–9.

    CAS  PubMed  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    PubMed  Google Scholar 

  4. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    CAS  PubMed  Google Scholar 

  5. Martini DJ, Lalani AA, Bosse D, Steinharter JA, Harshman LC, Hodi FS, et al. Response to single agent PD-1 inhibitor after progression on previous PD-1/PD-L1 inhibitors: a case series. J Immunother Cancer. 2017;5:66.

    PubMed  PubMed Central  Google Scholar 

  6. Wu SP, Liao RQ, Tu HY, Wang WJ, Dong ZY, Huang SM, et al. Stromal PD-L1-positive regulatory T cells and PD-1-positive CD8-positive T cells define the response of different subsets of non-small-cell lung cancer to PD-1/PD-L1 blockade immunotherapy. J Thorac Oncol. 2018;13:521–32.

    PubMed  Google Scholar 

  7. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol. 2015;33:1430–7.

    CAS  PubMed  Google Scholar 

  9. Atkins MB, Clark JI, Quinn DI. Immune checkpoint inhibitors in advanced renal cell carcinoma: experience to date and future directions. Ann Oncol. 2017;28:1484–94.

    CAS  PubMed  Google Scholar 

  10. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu X, Horner JW, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Javle M, Lowery M, Shroff RT, Weiss KH, Springfeld C, Borad MJ, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol. 2018;36:276–82.

    CAS  PubMed  Google Scholar 

  14. Nogova L, Sequist LV, Perez Garcia JM, Andre F, Delord JP, Hidalgo M, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, Dose-Escalation and Dose-Expansion Study. J Clin Oncol. 2017;35:157–65.

    CAS  PubMed  Google Scholar 

  15. Maleki Vareki S, Garrigos C, Duran I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol. 2017;116:116–24.

    PubMed  Google Scholar 

  16. Siu EH, Chan AW, Chong CC, Chan SL, Lo KW, Cheung ST. Treatment of advanced hepatocellular carcinoma: immunotherapy from checkpoint blockade to potential of cellular treatment. Transl Gastroenterol Hepatol. 2018;3:89.

    PubMed  PubMed Central  Google Scholar 

  17. Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology. 2013;218:1402–10.

    CAS  PubMed  Google Scholar 

  18. Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

    CAS  PubMed  Google Scholar 

  19. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591–6.

    CAS  PubMed  Google Scholar 

  20. Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27:462–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Y, Yang D, Li S, Gao Y, Jiang R, Deng L, et al. Development of a Listeria monocytogenes-based vaccine against hepatocellular carcinoma. Oncogene. 2012;31:2140–52.

    CAS  PubMed  Google Scholar 

  22. Shi X, Zhang X, Li J, Zhao H, Mo L, Shi X, et al. PD-1/PD-L1 blockade enhances the efficacy of SA-GM-CSF surface-modified tumor vaccine in prostate cancer. Cancer Lett. 2017;406:27–35.

    CAS  PubMed  Google Scholar 

  23. Lin PL, Cheng YM, Wu DW, Huang YJ, Lin HC, Chen CY, et al. A combination of anti-PD-L1 mAb plus Lm-LLO-E6 vaccine efficiently suppresses tumor growth and metastasis in HPV-infected cancers. Cancer Med. 2017;6:2052–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-gamma and IL-12. Immunity. 2018;49:1148–61 e1147.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ktistakis NT, Tooze SA. Digesting the expanding mechanisms of autophagy. Trends Cell Biol. 2016;26:624–35.

    CAS  PubMed  Google Scholar 

  27. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:651–62.

    CAS  PubMed  Google Scholar 

  28. Kroemer G. Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Investig. 2015;125:1–4.

    PubMed  PubMed Central  Google Scholar 

  29. Wallecha A, Singh R, Malinina I. Listeria monocytogenes (Lm)-LLO immunotherapies reduce the immunosuppressive activity of myeloid-derived suppressor cells and regulatory T cells in the tumor microenvironment. J Immunother. 2013;36:468–76.

    CAS  PubMed  Google Scholar 

  30. Chen P, Cescon M, Bonaldo P. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy. 2014;10:192–200.

    CAS  PubMed  Google Scholar 

  31. Sorbara MT, Foerster EG, Tsalikis J, Abdel-Nour M, Mangiapane J, Sirluck-Schroeder I, et al. Complement C3 drives autophagy-dependent restriction of cyto-invasive bacteria. Cell Host Microbe. 2018;23:644–52 e645.

    CAS  PubMed  Google Scholar 

  32. Conway KL, Kuballa P, Song JH, Patel KK, Castoreno AB, Yilmaz OH, et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology. 2013;145:1347–57.

    CAS  PubMed  Google Scholar 

  33. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, et al. NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria. Cell. 2016;164:896–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170:548–63.e516.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ayers M, Nebozhyn M, Cristescu R, McClanahan TK, Perini R, Rubin E, et al. Molecular profiling of cohorts of tumor samples to guide clinical development of pembrolizumab as monotherapy. Clin Cancer Res. 2019;25:1564–73.

    CAS  PubMed  Google Scholar 

  36. Zhao S, Ren S, Jiang T, Zhu B, Li X, Zhao C, et al. Low-dose apatinib optimizes tumor microenvironment and potentiates antitumor effect of PD-1/PD-L1 blockade in lung cancer. Cancer Immunol Res. 2019;7:630–43.

    CAS  PubMed  Google Scholar 

  37. Christopher MJ, Petti AA, Rettig MP, Miller CA, Chendamarai E, Duncavage EJ, et al. Immune escape of relapsed aml cells after allogeneic transplantation. N Engl J Med. 2018;379:2330–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dunai C, Murphy WJ. NK cells for PD-1/PD-L1 blockade immunotherapy: pinning down the NK cell. J Clin Investig. 2018;128:4251–3.

    PubMed  PubMed Central  Google Scholar 

  39. Lo Russo G, Moro M, Sommariva M, Cancila V, Boeri M, Centonze G, et al. Antibody-Fc/FcR Interaction on macrophages as a mechanism for hyperprogressive disease in non-small-cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin Cancer Res. 2019;25:989–99.

    CAS  PubMed  Google Scholar 

  40. Webster JA, Beck AH, Sharma M, Espinosa I, Weigelt B, Schreuder M, et al. Variations in stromal signatures in breast and colorectal cancer metastases. J Pathol. 2010;222:158–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yanik EL, Kaunitz GJ, Cottrell TR, Succaria F, McMiller TL, Ascierto ML, et al. Association of HIV status with local immune response to anal squamous cell carcinoma: implications for immunotherapy. JAMA Oncol. 2017;3:974–8.

    PubMed  PubMed Central  Google Scholar 

  42. Concha-Benavente F, Srivastava RM, Trivedi S, Lei Y, Chandran U, Seethala RR, et al. Identification of the Cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNgamma that induce PD-L1 expression in head and neck cancer. Cancer Res. 2016;76:1031–43.

    CAS  PubMed  Google Scholar 

  43. Lane RS, Femel J, Breazeale AP, Loo CP, Thibault G, Kaempf A, et al. IFNgamma-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J Exp Med. 2018;215:3057–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bel S, Pendse M, Wang Y, Li Y, Ruhn KA, Hassell B, et al. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science. 2017;357:1047–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ouyang Z, Tan T, Liu C, Duan J, Wang W, Guo X, et al. Targeted delivery of hesperetin to cartilage attenuates osteoarthritis by bimodal imaging with Gd2(CO3)3@PDA nanoparticles via TLR-2/NF-kappaB/Akt signaling. Biomaterials. 2019;205:50–63.

    CAS  PubMed  Google Scholar 

  46. Zhong J, Wang H, Chen W, Sun Z, Chen J, Xu Y, et al. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways. Cell Death Dis. 2017;8:e2763.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jung C, Meinzer U, Montcuquet N, Thachil E, Chateau D, Thiebaut R, et al. Yersinia pseudotuberculosis disrupts intestinal barrier integrity through hematopoietic TLR-2 signaling. J Clin Investig. 2012;122:2239–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Landais I, Pelton C, Streblow D, DeFilippis V, McWeeney S, Nelson JA. Human cytomegalovirus miR-UL112-3p targets TLR2 and modulates the TLR2/IRAK1/NFkappaB signaling pathway. PLoS Pathog. 2015;11:e1004881.

    PubMed  PubMed Central  Google Scholar 

  49. Drolia R, Tenguria S, Durkes AC, Turner JR, Bhunia AK. Listeria adhesion protein induces intestinal epithelial barrier dysfunction for bacterial translocation. Cell Host Microbe. 2018;23:470–84 e477.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sheng C, Yao C, Wang Z, Chen H, Zhao Y, Xu D, et al. Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Nat Commun. 2018;9:4381.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation (Grant Number: 81772602, 9174210027 to YC, 81902780 to YY). The Qing Lan Project, the Six Talent Peaks Project (JY-018), the “333” project, Jiangsu Provincial key research development program of China (BE2018750 to YC).

Author information

Authors and Affiliations

Authors

Contributions

YC and GLX conceived and designed the experiments. GLX and YY participated in the experiments and drafted the manuscript. XXM, CXL, RQJ, and BCS contributed to the sample collection and interpretation of the data. HY and DJF performed the statistical analysis. GLX, PPL, and HS revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Feng, D., Yao, Y. et al. Listeria-based hepatocellular carcinoma vaccine facilitates anti-PD-1 therapy by regulating macrophage polarization. Oncogene 39, 1429–1444 (2020). https://doi.org/10.1038/s41388-019-1072-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1072-3

This article is cited by

Search

Quick links