Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heat-shock proteins: chaperoning DNA repair

Abstract

Cells are repeatedly exposed to environmental or endogenous stresses that can alter normal cell behavior and increase cell vulnerability. In order to ensure tissue integrity and function, cells cope with cellular injuries by adapting their metabolism, protecting essential intracellular constituents, inhibiting cell death signaling pathways and activating those devoted to damage repair. The molecular chaperones of the heat-shock protein (HSP) family are critical effectors of this adaptive response. They protect intracellular proteins from misfolding or aggregation, inhibit cell death signaling cascades and preserve the intracellular signaling pathways that are essential for cell survival. Most HSPs are rapidly overexpressed in response to cellular injuries including genotoxic stress. DNA damage can dramatically alter cell behavior and contribute to a number of diseases including developmental defects, neurodegenerative disorders, and cancer. Thus, the ability of cells to repair DNA damage is essential for preserving cell integrity. DNA damage activates a coordinated response that includes detecting DNA lesions before their transmission to daughter cells, blocking cell cycle progression and DNA replication and repairing the damage. Although the role of HSPs in proteins homeostasis and cell death, especially apoptosis has been widely reported, much less is known about their function in DNA repair. This review aims to present the role of HSPs in DNA repair signaling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jego G, Hazoumé A, Seigneuric R, Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013;332:275–85.

    CAS  PubMed  Google Scholar 

  2. Calderwood SK, Repasky EA, Neckers L, Hightower LE. The IXth CSSI international symposium on heat shock proteins in biology and medicine: stress responses in health and disease: Alexandria old town, Alexandria, Virginia, November 10-13, 2018. Cell Stress Chaperones. 2019;24:1–6.

    PubMed  PubMed Central  Google Scholar 

  3. Liu Y, Li Y, Lu X. Regulators in the DNA damage response. Arch Biochem Biophys. 2016;594:18–25.

    CAS  PubMed  Google Scholar 

  4. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66:801–17.

    CAS  PubMed  Google Scholar 

  5. Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci. 2017;22:1493–522.

    CAS  Google Scholar 

  6. Wallace SS. Base excision repair: a critical player in many games. DNA Repair. 2014;19:14–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006;7:335–46.

    CAS  PubMed  Google Scholar 

  8. Baretti M, Le DT. DNA mismatch repair in cancer. Pharm Ther. 2018;189:45–62.

    CAS  Google Scholar 

  9. Schärer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol. 2013;5:a012609.

    PubMed  PubMed Central  Google Scholar 

  10. Her J, Bunting SF. How cells ensure correct repair of DNA double-strand breaks. J Biol Chem. 2018;293:10502–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem. 2018;293:10512–23.

    CAS  PubMed  Google Scholar 

  12. Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem. 2018;293:10524–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sallmyr A, Tomkinson AE. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem. 2018;293:10536–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sottile ML, Nadin SB. Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones. 2018;23:303–15.

    CAS  PubMed  Google Scholar 

  15. Yamamori T, Meike S, Nagane M, Yasui H, Inanami O. ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51. FEBS Lett. 2013;587:3348–53.

    CAS  PubMed  Google Scholar 

  16. Weatherbee JL, Kraus JL, Ross AH. ER stress in temozolomide-treated glioblastomas interferes with DNA repair and induces apoptosis. Oncotarget. 2016;7:43820–34.

    PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Ji W, Shergalis A, Xu J, Delaney AM, Calcaterra A, et al. Activation of the unfolded protein response via inhibition of protein disulfide isomerase decreases the capacity for DNA repair to sensitize glioblastoma to radiotherapy. Cancer Res. 2019;79:2923–32.

    CAS  PubMed  Google Scholar 

  18. Dicks N, Gutierrez K, Michalak M, Bordignon V, Agellon LB. Endoplasmic reticulum stress, genome damage, and cancer. Front Oncol. 2015;5:11.

    PubMed  PubMed Central  Google Scholar 

  19. Nadin SB, Vargas-Roig LM, Drago G, Ibarra J, Ciocca DR. Hsp27, Hsp70 and mismatch repair proteins hMLH1 and hMSH2 expression in peripheral blood lymphocytes from healthy subjects and cancer patients. Cancer Lett. 2007;252:131–46.

    CAS  PubMed  Google Scholar 

  20. Castro GN, Cayado-Gutiérrez N, Zoppino FC, Fanelli MA, Cuello-Carrión FD, Sottile M, et al. Effects of temozolomide (TMZ) on the expression and interaction of heat shock proteins (HSPs) and DNA repair proteins in human malignant glioma cells. Cell Stress Chaperones. 2015;20:253–65.

    CAS  PubMed  Google Scholar 

  21. Sottile ML, Losinno AD, Fanelli MA, Cuello-Carrión FD, Montt-Guevara MM, Vargas-Roig LM, et al. Hyperthermia effects on Hsp27 and Hsp72 associations with mismatch repair (MMR) proteins and cisplatin toxicity in MMR-deficient/proficient colon cancer cell lines. Int J Hyperth. 2015;31:464–75.

    CAS  Google Scholar 

  22. Kotoglou P, Kalaitzakis A, Vezyraki P, Tzavaras T, Michalis LK, Dantzer F, et al. Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks. Cell Stress Chaperones. 2009;14:391–406.

    CAS  PubMed  Google Scholar 

  23. Dote H, Burgan WE, Camphausen K, Tofilon PJ. Inhibition of hsp90 compromises the DNA damage response to radiation. Cancer Res. 2006;66:9211–20.

    CAS  PubMed  Google Scholar 

  24. Noguchi M, Yu D, Hirayama R, Ninomiya Y, Sekine E, Kubota N, et al. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Biochem Biophys Res Commun. 2006;351:658–63.

    CAS  PubMed  Google Scholar 

  25. Stecklein SR, Kumaraswamy E, Behbod F, Wang W, Chaguturu V, Harlan-Williams LM, et al. BRCA1 and HSP90 cooperate in homologous and non-homologous DNA double-strand-break repair and G2/M checkpoint activation. Proc Natl Acad Sci USA. 2012;109:13650–5.

    CAS  PubMed  Google Scholar 

  26. Oda T, Hayano T, Miyaso H, Takahashi N, Yamashita T. Hsp90 regulates the Fanconi anemia DNA damage response pathway. Blood. 2007;109:5016–26.

    CAS  PubMed  Google Scholar 

  27. Quanz M, Herbette A, Sayarath M, de Koning L, Dubois T, Sun JS, et al. Heat shock protein 90α (Hsp90α) is phosphorylated in response to DNA damage and accumulates in repair foci. J Biol Chem. 2012;287:8803–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Imahori T, Hosoda K, Nakai T, Yamamoto Y, Irino Y, Shinohara M, et al. Combined metabolic and transcriptional profiling identifies pentose phosphate pathway activation by HSP27 phosphorylation during cerebral ischemia. Neuroscience. 2017;349:1–16.

    CAS  PubMed  Google Scholar 

  29. Yamamoto Y, Hosoda K, Imahori T, Tanaka J, Matsuo K, Nakai T, et al. Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion. Brain Res. 2018;1687:82–94.

    CAS  PubMed  Google Scholar 

  30. Elaimy AL, Ahsan A, Marsh K, Pratt WB, Ray D, Lawrence TS, et al. ATM is the primary kinase responsible for phosphorylation of Hsp90α after ionizing radiation. Oncotarget. 2016;7:82450–7.

    PubMed  PubMed Central  Google Scholar 

  31. Solier S, Kohn KW, Scroggins B, Xu W, Trepel J, Neckers L, et al. Heat shock protein 90α (HSP90α), a substrate and chaperone of DNA-PK necessary for the apoptotic response. Proc Natl Acad Sci USA. 2012;109:12866–72.

    CAS  PubMed  Google Scholar 

  32. Li Q, Martinez JD. Loss of HSF1 results in defective radiation-induced G(2) arrest and DNA repair. Radiat Res. 2011;176:17–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. Adv Protein Chem Struct Biol. 2019;114:1–60.

    PubMed  Google Scholar 

  34. Arrigo AP. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell. Cell Stress Chaperones. 2017;22:517–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu Y, Diao Y, Qi S, Pan X, Wang Q, Xin Y, et al. Phosphorylated Hsp27 activates ATM-dependent p53 signaling and mediates the resistance of MCF-7 cells to doxorubicin-induced apoptosis. Cell Signal. 2013;25:1176–85.

    CAS  PubMed  Google Scholar 

  36. Guttmann DM, Hart L, Du K, Seletsky A, Koumenis C. Inhibition of Hsp27 radiosensitizes head-and-neck cancer by modulating deoxyribonucleic acid repair. Int J Radiat Oncol Biol Phys. 2013;87:168–75.

    CAS  PubMed  Google Scholar 

  37. Katsogiannou M, Andrieu C, Baylot V, Baudot A, Dusetti NJ, Gayet O, et al. The functional landscape of Hsp27 reveals new cellular processes such as DNA repair and alternative splicing and proposes novel anticancer targets. Mol Cell Proteom. 2014;13:3585–601.

    CAS  Google Scholar 

  38. Wano C, Kita K, Takahashi S, Sugaya S, Hino M, Hosoya H, et al. Protective role of HSP27 against UVC-induced cell death in human cells. Exp Cell Res. 2004;298:584–92.

    CAS  PubMed  Google Scholar 

  39. Clerico EM, Meng W, Pozhidaeva A, Bhasne K, Petridis C, Gierasch LM. Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J. 2019;476:1653–77.

    CAS  PubMed  Google Scholar 

  40. Morán Luengo T, Mayer MP, Rüdiger SGD. The Hsp70-Hsp90 chaperone cascade in protein folding. Trends Cell Biol. 2019;29:164–77.

    PubMed  Google Scholar 

  41. Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell. Biol. 2019. Epub ahead of print.

  42. Calini V, Urani C, Camatini M. Overexpression of HSP70 is induced by ionizing radiation in C3H 10T1/2 cells and protects from DNA damage. Toxicol Vitr. 2003;17:561–6.

    CAS  Google Scholar 

  43. Park KC, Kim DS, Choi HO, Kim KH, Chung JH, Eun HC, et al. Overexpression of HSP70 prevents ultraviolet B-induced apoptosis of a human melanoma cell line. Arch Dermatol Res. 2000;292:482–7.

    CAS  PubMed  Google Scholar 

  44. Duan Y, Huang S, Yang J, Niu P, Gong Z, Liu X, et al. HspA1A facilitates DNA repair in human bronchial epithelial cells exposed to Benzo[a]pyrene and interacts with casein kinase 2. Cell Stress Chaperones. 2014;19:271–9.

    CAS  PubMed  Google Scholar 

  45. Hunt CR, Dix DJ, Sharma GG, Pandita RK, Gupta A, Funk M, et al. Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Mol Cell Biol. 2004;24:899–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho W, Jin X, Pang J, Wang Y, Mivechi NF, Moskophidis D. The molecular chaperone heat shock protein 70 controls liver cancer initiation and progression by regulating adaptive DNA damage and mitogen-activated protein kinase/extracellular Signal-regulated Kinase Signaling Pathways. Mol Cell Biol. 2019;39:00391–18.

    Google Scholar 

  47. Zemanovic S, Ivanov MV, Ivanova LV, Bhatnagar A, Michalkiewicz T, Teng RJ, et al. Dynamic phosphorylation of the C terminus of Hsp70 regulates the mitochondrial import of SOD2 and redox balance. Cell Rep. 2018;25:2605–16.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Martínez de Toda I, De la Fuente M. The role of Hsp70 in oxi-inflamm-aging and its use as a potential biomarker of lifespan. Biogerontology. 2015;16:709–21.

    PubMed  Google Scholar 

  49. Kim W, Kwon HJ, Jung HY, Yoo DY, Moon SM, Kim DW, et al. Tat-HSP70 protects neurons from oxidative damage in the NSC34 cells and ischemic damage in the ventral horn of rabbit spinal cord. Neurochem. Int. 2019;129:104477.

    CAS  PubMed  Google Scholar 

  50. Abe T, Konishi T, Hirano T, Kasai H, Shimizu K, Kashimura M, et al. Possible correlation between DNA damage induced by hydrogen peroxide and translocation of heat shock 70 protein into the nucleus. Biochem Biophys Res Commun. 1995;206:548–55.

    CAS  PubMed  Google Scholar 

  51. Bases R. Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation. Cell Stress Chaperones. 2006;11:240–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kenny GP, Reardon FD, Giesbrecht GG, Jette M, Thoden JS. The effect of ambient temperature and exercise intensity on post-exercise thermal homeostasis. Eur J Appl Physiol Occup Physiol. 1997;76:109–15.

    CAS  PubMed  Google Scholar 

  53. Mendez F, Kozin E, Bases R. Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase beta. Cell Stress Chaperones. 2003;8:153–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kenny MK, Mendez F, Sandigursky M, Kureekattil RP, Goldman JD, Franklin WA, et al. Heat shock protein 70 binds to human apurinic/apyrimidinic endonuclease and stimulates endonuclease activity at abasic sites. J Biol Chem. 2001;276:9532–6.

    CAS  PubMed  Google Scholar 

  55. Yang J, Liu X, Niu P, Zou Y, Duan Y. Correlations and co-localizations of Hsp70 with XPA, XPG in human bronchial epithelia cells exposed to benzo[a]pyrene. Toxicology. 2009;265:10–4.

    CAS  PubMed  Google Scholar 

  56. Petit MA, Bedale W, Osipiuk J, Lu C, Rajagopalan M, McInerney P, et al. Sequential folding of UmuC by the Hsp70 and Hsp60 chaperone complexes of Escherichia coli. J Biol Chem. 1994;269:23824–9.

    CAS  PubMed  Google Scholar 

  57. Goldfless SJ, Morag AS, Belisle KA, Sutera VA, Lovett ST. DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Mol Cell. 2006;21:595–604.

    CAS  PubMed  Google Scholar 

  58. Park C, Suh Y, Cuervo AM. Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat Commun. 2015;6:6823.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Litwin I, Pilarczyk E, Wysocki R. The emerging role of cohesin in the DNA damage response. Genes (Basel). 2018;9:581.

    Google Scholar 

  60. Heidinger-Pauli JM, Unal E, Guacci V, Koshland D. The kleisin subunit of cohesin dictates damage-induced cohesion. Mol Cell. 2008;31:47–56.

    CAS  PubMed  Google Scholar 

  61. Gvozdenov Z, Kolhe J, Freeman BC. the nuclear and DNA-associated molecular chaperone network. Cold Spring Harb Perspect Biol. 2019. Epub ahead of print.

  62. Koll TT, Feis SS, Wright MH, Teniola MM, Richardson MM, Robles AI, et al. HSP90 inhibitor, DMAG, synergizes with radiation of lung cancer cells by interfering with base excision and ATM-mediated DNA repair. Mol Cancer Ther. 2008;7:1985–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi EJ, Cho BJ, Lee DJ, Hwang YH, Chun SH, Kim HH, et al. Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases. BMC Cancer. 2014;14:17.

    PubMed  PubMed Central  Google Scholar 

  64. Lee Y, Li HK, Masaoka A, Sunada S, Hirakawa H, Fujimori A, et al. The purine scaffold Hsp90 inhibitor PU-H71 sensitizes cancer cells to heavy ion radiation by inhibiting DNA repair by homologous recombination and non-homologous end joining. Radiother Oncol. 2016;121:162–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ha K, Fiskus W, Rao R, Balusu R, Venkannagari S, Nalabothula NR, et al. Hsp90 inhibitor-mediated disruption of chaperone association of ATR with hsp90 sensitizes cancer cells to DNA damage. Mol Cancer Ther. 2011;10:1194–206.

    CAS  PubMed  Google Scholar 

  66. Ernst A, Anders H, Kapfhammer H, Orth M, Hennel R, Seidl K, et al. HSP90 inhibition as a means of radiosensitizing resistant, aggressive soft tissue sarcomas. Cancer Lett. 2015;365:211–22.

    CAS  PubMed  Google Scholar 

  67. Zaidi S, McLaughlin M, Bhide SA, Eccles SA, Workman P, Nutting CM, et al. The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage. PLoS ONE. 2012;7:e35436.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheng AN, Fan CC, Lo YK, Kuo CL, Wang HC, Lien IH, et al. Cdc7-Dbf4-mediated phosphorylation of HSP90-S164 stabilizes HSP90-HCLK2-MRN complex to enhance ATR/ATM signaling that overcomes replication stress in cancer. Sci Rep. 2017;7:17024.

    PubMed  PubMed Central  Google Scholar 

  69. Ko JC, Chen HJ, Huang YC, Tseng SC, Weng SH, Wo TY, et al. HSP90 inhibition induces cytotoxicity via down-regulation of Rad51 expression and DNA repair capacity in non-small cell lung cancer cells. Regul Toxicol Pharmacol. 2012;64:415–24.

    CAS  PubMed  Google Scholar 

  70. Suhane T, Laskar S, Advani S, Roy N, Varunan S, Bhattacharyya D, et al. Both the charged linker region and ATPase domain of Hsp90 are essential for Rad51-dependent DNA repair. Eukaryot Cell. 2015;14:64–77.

    PubMed  Google Scholar 

  71. Mittelman D, Sykoudis K, Hersh M, Lin Y, Wilson JH. Hsp90 modulates CAG repeat instability in human cells. Cell Stress Chaperones. 2010;15:753–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dungey FA, Caldecott KW, Chalmers AJ. Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol Cancer Ther. 2009;8:2243–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang Y, Wang W, Li M, Gao Y, Zhang W, Huang Y, et al. NudCL2 is an Hsp90 cochaperone to regulate sister chromatid cohesion by stabilizing cohesin subunits. Cell Mol Life Sci. 2019;76:381–95.

    CAS  PubMed  Google Scholar 

  74. Khurana N, Bakshi S, Tabassum W, Bhattacharyya MK, Bhattacharyya S. Hsp90 is essential for Chl1-mediated chromosome segregation and sister chromatid cohesion. mSphere. 2018;3:e00225–18.

    PubMed  PubMed Central  Google Scholar 

  75. Schrank B, Gautier J. Assembling nuclear domains: Lessons from DNA repair. J Cell Biol. 2019;218:2444–55.

    PubMed  Google Scholar 

  76. Echtenkamp FJ, Gvozdenov Z, Adkins NL, Zhang Y, Lynch-Day M, Watanabe S, et al. Hsp90 and p23 molecular chaperones control chromatin architecture by maintaining the functional pool of the RSC chromatin remodeler. Mol Cell. 2016;64:888–99.

    CAS  PubMed  Google Scholar 

  77. Arlander SJ, Felts SJ, Wagner JM, Stensgard B, Toft DO, Karnitz LM. Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem. 2006;281:2989–98.

    CAS  PubMed  Google Scholar 

  78. Arlander SJ, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM. Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem. 2003;278:52572–7.

    CAS  PubMed  Google Scholar 

  79. Nomura M, Nomura N, Yamashita J. Geldanamycin-induced degradation of Chk1 is mediated by proteasome. Biochem Biophys Res Commun. 2005;335:900–5.

    CAS  PubMed  Google Scholar 

  80. Fang Q, Inanc B, Schamus S, Wang XH, Wei L, Brown AR, et al. HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β. Nat Commun. 2014;5:5513.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang X, Heuvelman DM, Carroll JA, Dufield DR, Masferrer JL. Geldanamycin-induced PCNA degradation in isolated Hsp90 complex from cancer cells. Cancer Invest. 2010;28:635–41.

    CAS  PubMed  Google Scholar 

  82. Sekimoto T, Oda T, Pozo FM, Murakumo Y, Masutani C, Hanaoka F, et al. The molecular chaperone Hsp90 regulates accumulation of DNA polymerase eta at replication stalling sites in UV-irradiated cells. Mol Cell. 2010;37:79–89.

    CAS  PubMed  Google Scholar 

  83. Zabinsky RA, Mason GA, Queitsch C, Jarosz DF. It’s not magic-Hsp90 and its effects on genetic and epigenetic variation. Semin Cell Dev Biol. 2019;88:21–35.

    CAS  PubMed  Google Scholar 

  84. Condelli V, Crispo F, Pietrafesa M, Lettini G, Matassa DS, Esposito F, et al. HSP90 molecular chaperones, metabolic rewiring, and epigenetics: impact on tumor progression and perspective for anticancer therapy. Cells. 2019;8:532–55.

    PubMed Central  Google Scholar 

  85. Isaacs JS. Hsp90 as a “Chaperone” of the epigenome: insights and opportunities for cancer therapy. Adv Cancer Res. 2016;129:107–40.

    CAS  PubMed  Google Scholar 

  86. Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet. 2003;33:70–4.

    CAS  PubMed  Google Scholar 

  87. Li QQ, Hao JJ, Zhang Z, Krane LS, Hammerich KH, Sanford T, et al. Proteomic analysis of proteome and histone post-translational modifications in heat shock protein 90 inhibition-mediated bladder cancer therapeutics. Sci Rep. 2017;7:201.

    PubMed  PubMed Central  Google Scholar 

  88. Campos EI, Fillingham J, Li G, Zheng H, Voigt P, Kuo WH, et al. The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol. 2010;17:1343–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D. The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteom. 2008;7:560–72.

    CAS  Google Scholar 

  90. Obermann WMJ. A motif in HSP90 and P23 that links molecular chaperones to efficient estrogen receptor α methylation by the lysine methyltransferase SMYD2. J Biol Chem. 2018;293:16479–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Brown MA, Foreman K, Harriss J, Das C, Zhu L, Edwards M, et al. C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis. Oncotarget 2015;6:4005–19.

    PubMed  PubMed Central  Google Scholar 

  92. Huang Q, He S, Tian Y, Gu Y, Chen P, Li C, et al. Hsp90 inhibition destabilizes Ezh2 protein in alloreactive T cells and reduces graft-versus-host disease in mice. Blood. 2017;129:2737–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Coban N, Varol N. The effect of heat shock protein 90 inhibitors on histone 4 lysine 20 methylation in bladder cancer. EXCLI J. 2019;18:195–203.

    PubMed  PubMed Central  Google Scholar 

  94. Zhou X, Fan LX, Peters DJ, Trudel M, Bradner JE, Li X. Therapeutic targeting of BET bromodomain protein, Brd4, delays cyst growth in ADPKD. Hum Mol Genet. 2015;24:3982–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kasioulis I, Syred HM, Tate P, Finch A, Shaw J, Seawright A, et al. Kdm3a lysine demethylase is an Hsp90 client required for cytoskeletal rearrangements during spermatogenesis. Mol Biol Cell. 2014;25:1216–33.

    PubMed  PubMed Central  Google Scholar 

  96. Mattoo RU, Sharma SK, Priya S, Finka A, Goloubinoff P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem. 2013;288:21399–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, et al. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J. 2012;31:4221–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Taherian A, Krone PH, Ovsenek N. A comparison of Hsp90alpha and Hsp90beta interactions with cochaperones and substrates. Biochem Cell Biol. 2008;86:37–45.

    CAS  PubMed  Google Scholar 

  99. Gozzi G, Gonzalez D, Boudesco C, Dias A, Gotthard G, Uyanik B, et al. Selecting the first chemical molecule inhibitor of HSP110 for colorectal cancer therapy. Cell Death Differ. 2019. Epub ahead of print.

  100. Rauch JN, Gestwicki JE. Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. J Biol Chem. 2014;289:1402–14.

    CAS  PubMed  Google Scholar 

  101. Bracher A, Verghese J. The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci. 2015;2:10.

    PubMed  PubMed Central  Google Scholar 

  102. Kai M, Nakatsura T, Egami H, Senju S, Nishimura Y, Ogawa M. Heat shock protein 105 is overexpressed in a variety of human tumors. Oncol Rep. 2003;10:1777–82.

    CAS  PubMed  Google Scholar 

  103. Thomas X, Campos L, Mounier C, Cornillon J, Flandrin P, Le QH, et al. Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leuk Res. 2005;29:1049–58.

    CAS  PubMed  Google Scholar 

  104. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci. 2006;31:164–72.

    CAS  PubMed  Google Scholar 

  105. Dorard C, de Thonel A, Collura A, Marisa L, Svrcek M, Lagrange A, et al. Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med. 2011;17:1283–9.

    CAS  PubMed  Google Scholar 

  106. Collura A, Lagrange A, Svrcek M, Marisa L, Buhard O, Guilloux A, et al. Patients with colorectal tumors with microsatellite instability and large deletions in HSP110 T17 have improved response to 5-fluorouracil–based chemotherapy. Gastroenterology. 2014;146:401–11.e1.

    CAS  PubMed  Google Scholar 

  107. Kimura A, Ogata K, Altan B, Yokobori T, Ide M, Mochiki E, et al. Nuclear heat shock protein 110 expression is associated with poor prognosis and chemotherapy resistance in gastric cancer. Oncotarget. 2016;7:18415–23.

    PubMed  PubMed Central  Google Scholar 

  108. Causse SZ, Marcion G, Chanteloup G, Uyanik B, Boudesco C, Grigorash BB, et al. HSP110 translocates to the nucleus upon genotoxic chemotherapy and promotes DNA repair in colorectal cancer cells. Oncogene. 2019;38:2767–77.

    CAS  PubMed  Google Scholar 

  109. Chatterjee S, Burns TF. Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci. 2017;18:1978.

    PubMed Central  Google Scholar 

  110. Olotu F, Adeniji E, Agoni C, Bjij I, Khan S, Elrashedy A, et al. An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy. Expert Opin Drug Discov. 2018;13:903–18.

    CAS  PubMed  Google Scholar 

  111. Boudesco C, Verhoeyen E, Martin L, Chassagne-Clement C, Salmi L, Mhaidly R, et al. HSP110 sustains chronic NF-κB signaling in activated B-cell diffuse large B-cell lymphoma through MyD88 stabilization. Blood. 2018;132:510–20.

    CAS  PubMed  Google Scholar 

  112. Garrido C, Collura A, Berthenet K, Lagrange A, Duval A. [Mutation of HSP110 in colorectal cancer: the chaperone paradox]. Med Sci. 2012;28:9–10.

    Google Scholar 

  113. Yamashita T, Oda T, Sekimoto T. Hsp90 and the Fanconi anemia pathway: a molecular link between protein quality control and the DNA damage response. Cell Cycle. 2007;6:2232–5.

    CAS  PubMed  Google Scholar 

  114. Naim V, Rosselli F. The FANC pathway and mitosis: a replication legacy. Cell Cycle. 2009;8:2907–11.

    CAS  PubMed  Google Scholar 

  115. Leu JI, Pimkina J, Frank A, Murphy ME, George DL. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell. 2009;36:15–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Rousaki A, Miyata Y, Jinwal UK, Dickey CA, Gestwicki JE, Zuiderweg ER. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J Mol Biol. 2011;411:614–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Li X, Srinivasan SR, Connarn J, Ahmad A, Young ZT, Kabza AM, et al. Analogs of the allosteric heat shock protein 70 (Hsp70) inhibitor, MKT-077, as anti-cancer agents. ACS Med Chem Lett. 2013;4:1042–47.

    CAS  PubMed Central  Google Scholar 

  118. Miyata Y, Li X, Lee HF, Jinwal UK, Srinivasan SR, Seguin SP, et al. Synthesis and initial evaluation of YM-08, a blood-brain barrier permeable derivative of the heat shock protein 70 (Hsp70) inhibitor MKT-077, which reduces tau levels. ACS Chem Neurosci. 2013;4:930–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Dutta Gupta S, Bommaka MK, Banerjee A. Inhibiting protein-protein interactions of Hsp90 as a novel approach for targeting cancer. Eur J Med Chem. 2019;178:48–63.

    CAS  PubMed  Google Scholar 

  120. Heinrich JC, Tuukkanen A, Schroeder M, Fahrig T, Fahrig R. RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J Cancer Res Clin Oncol. 2011;137:1349–61.

    PubMed  Google Scholar 

  121. Schmitt E, Parcellier A, Gurbuxani S, Cande C, Hammann A, Morales MC, et al. Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant. Cancer Res. 2003;63:8233–40.

    CAS  PubMed  Google Scholar 

  122. Rérole AL, Gobbo J, De Thonel A, Schmitt E, Pais de Barros JP, Hammann A, et al. Peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy. Cancer Res. 2011;71:484–95.

    PubMed  Google Scholar 

  123. Nadeau K, Nadler SG, Saulnier M, Tepper MA, Walsh CT. Quantitation of the interaction of the immunosuppressant deoxyspergualin and analogs with Hsc70 and Hsp90. Biochemistry. 1994;33:2561–7.

    CAS  PubMed  Google Scholar 

  124. Fewell SW, Smith CM, Lyon MA, Dumitrescu TP, Wipf P, Day BW, et al. Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem. 2004;279:51131–40.

    CAS  PubMed  Google Scholar 

  125. Massey AJ, Williamson DS, Browne H, Murray JB, Dokurno P, Shaw T, et al. A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharm. 2010;66:535–45.

    CAS  Google Scholar 

  126. Neckers L, Schulte TW, Mimnaugh E. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs. 1999;17:361–73.

    CAS  PubMed  Google Scholar 

  127. Jez JM, Chen JC, Rastelli G, Stroud RM, Santi DV. Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem Biol. 2003;10:361–8.

    CAS  PubMed  Google Scholar 

  128. Jang WJ, Jung SK, Kang JS, Jeong JW, Bae MK, Joo SH, et al. Anti-tumor activity of WK88-1, a novel geldanamycin derivative, in gefitinib-resistant non-small cell lung cancers with Met amplification. Cancer Sci. 2014;105:1245–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sydor JR, Normant E, Pien CS, Porter JR, Ge J, Grenier L, et al. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci USA. 2006;103:17408–13.

    CAS  PubMed  Google Scholar 

  130. Scaltriti M, Serra V, Normant E, Guzman M, Rodriguez O, Lim AR, et al. Antitumor activity of the Hsp90 inhibitor IPI-504 in HER2-positive trastuzumab-resistant breast cancer. Mol Cancer Ther. 2011;10:817–24.

    CAS  PubMed  Google Scholar 

  131. Soga S, Shiotsu Y, Akinaga S, Sharma SV. Development of radicicol analogues. Curr Cancer Drug Targets. 2003;3:359–69.

    CAS  PubMed  Google Scholar 

  132. Wang Y, Trepel JB, Neckers LM. Giaccone G. STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs. 2010;11:1466–76.

    CAS  PubMed  Google Scholar 

  133. Woodhead AJ, Angove H, Carr MG, Chessari G, Congreve M, Coyle JE, et al. Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J Med Chem. 2010;53:5956–69.

    CAS  PubMed  Google Scholar 

  134. Kim SH, Bajji A, Tangallapally R, Markovitz B, Trovato R, Shenderovich M, et al. Discovery of (2S)-1-[4-(2-{6-amino-8-[(6-bromo-1,3-benzodioxol-5-yl)sulfanyl]-9H-purin-9-yl}ethyl)piperidin-1-yl]-2-hydroxypropan-1-one (MPC-3100), a purine-based Hsp90 inhibitor. J Med Chem. 2012;55:7480–501.

    CAS  PubMed  Google Scholar 

  135. Huang KH, Veal JM, Fadden RP, Rice JW, Eaves J, Strachan JP, et al. Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent, selective and orally active antitumor agents. J Med Chem. 2009;52:4288–305.

    CAS  PubMed  Google Scholar 

  136. Gibert B, Hadchity E, Czekalla A, Aloy MT, Colas P, Rodriguez-Lafrasse C, et al. Inhibition of heat shock protein 27 (HspB1) tumorigenic functions by peptide aptamers. Oncogene. 2011;30:3672–81.

    CAS  PubMed  Google Scholar 

  137. Stangl S, Gehrmann M, Riegger J, Kuhs K, Riederer I, Sievert W, et al. Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci USA. 2011;108:733–8.

    CAS  PubMed  Google Scholar 

  138. Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L, et al. Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int. 2006;98:1082–9.

    CAS  PubMed  Google Scholar 

  139. Fu WM, Wang WM, Wang H, Zhu X, Liang Y, Kung HF, et al. 1,3,5-Trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone directly targets heat shock protein 27 in hepatocellular carcinoma. Cell Biol Int. 2014;38:272–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work was supported by grants from the Institut National du Cancer, Ligue Nationale Contre le Cancer, the Conseil Regional de Bourgogne, a French Government grants managed by the French National Research Agency under the program“Investissements d’Avenir” with reference ANR-11-LABX-0021 (LabEX LipSTIC) and ANR-15-IDEX-0003 (I-SITE-UBFC). We thank the “Fondation de France” (SC) and the European Union program FEDER.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laurence Dubrez or Carmen Garrido.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrez, L., Causse, S., Borges Bonan, N. et al. Heat-shock proteins: chaperoning DNA repair. Oncogene 39, 516–529 (2020). https://doi.org/10.1038/s41388-019-1016-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1016-y

This article is cited by

Search

Quick links