Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C/EBPδ-Slug-Lox1 axis promotes metastasis of lung adenocarcinoma via oxLDL uptake

Abstract

Cancer cells undergo significant lipid metabolic reprogramming to ensure sufficient energy supply for survival and progression. However, how cancer cells integrate lipid metabolic signaling with cancer progression is not well understood. In the present study, we demonstrated that C/EBPδ, a critical lipid metabolic regulator, is a TGF-β1 downstream gene and promotes lung adenocarcinoma metastasis. Importantly, C/EBPδ caused significant oscillations in both lipid metabolic and epithelial to mesenchymal transition (EMT) gene networks. Mechanistically, we demonstrated that C/EBPδ recruited oncogene NCOA3 to transcriptionally activate Slug, a canonical EMT transcription factor, which in turn induced oxLDL receptor-1 (Lox1) expression and enhanced oxLDL uptake to promote cancer metastasis, which could be blocked with LOX1 neutralizing antibody. In summary, our results unveiled a previously unappreciated interplay between lipid metabolic and metastatic program, as well as the existence of a pivotal C/EBPδ-Slug-Lox1 transcription axis to promote oxLDL levels and cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. Ca Cancer J Clin. 2018;68:7–30.

    PubMed  Google Scholar 

  2. Samet JM, Avila-Tang E, Boffetta P, Hannan LM, Olivo-Marston S, Thun MJ, et al. Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res. 2009;15:5626–45.

    PubMed  PubMed Central  Google Scholar 

  3. Hou S, Zhou S, Qin Z, Yang L, Han X, Yao S, et al. Evidence, mechanism, and clinical relevance of the transdifferentiation from lung adenocarcinoma to squamous cell carcinoma. Am J Pathol. 2017;187:954–62.

    CAS  PubMed  Google Scholar 

  4. Lue HW, Podolak J, Kolahi K, Cheng L, Rao S, Garg D, et al. Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade. Genes Dev. 2017;31:2067–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27:57–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A. Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer. 2016;15:69.

    PubMed  PubMed Central  Google Scholar 

  7. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763–77.

    CAS  PubMed  Google Scholar 

  8. Noto A, De Vitis C, Pisanu ME, Roscilli G, Ricci G, Catizone A, et al. Stearoyl-CoA-desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ. Oncogene. 2017;36:4573–84.

    CAS  PubMed  Google Scholar 

  9. Rios Garcia M, Steinbauer B, Srivastava K, Singhal M, Mattijssen F, Maida A, et al. Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence. Cell Metab. 2017;26:842–55.

    CAS  PubMed  Google Scholar 

  10. Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541:41–5.

    CAS  PubMed  Google Scholar 

  11. Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J. 2002;365:561–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional regulation of adipogenesis. Compr Physiol. 2017;7:635–74.

    PubMed  Google Scholar 

  13. MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem. 1995;64:345–73.

    CAS  PubMed  Google Scholar 

  14. Balamurugan K, Sterneck E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int J Biol Sci. 2013;9:917–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang J, Park JS, Wei Y, Rajurkar M, Cotton JL, Fan Q, et al. TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPα function. Mol Cell. 2013;51:211–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang WJ, Li CF, Chu YY, Wang YH, Hour TC, Yen CJ, et al. Inhibition of the EGFR/STAT3/CEBPD axis reverses cisplatin cross-resistance with paclitaxel in the urothelial carcinoma of the urinary bladder. Clin Cancer Res. 2017;23:503–13.

    CAS  PubMed  Google Scholar 

  17. DeCraene B, Berx G. Regulatory networks defining EMT during cancerinitiation and progression. Nat Rev Cancer. 2013;13:97–110.

    CAS  Google Scholar 

  18. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13:395–412.

    CAS  PubMed  Google Scholar 

  19. Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556:463–8.

    CAS  PubMed  Google Scholar 

  20. Pérez-Mancera PA, Bermejo-Rodríguez C, González-Herrero I, Herranz M, Flores T, Jiménez R, et al. Adipose tissue mass is modulated by SLUG (SNAI2). Hum Mol Genet. 2007;16:2972–86.

    PubMed  Google Scholar 

  21. Kobayashi K, Kishi M, Atsumi T, Bertolaccini ML, Makino H, Sakairi N, et al. Circulating oxidized LDL forms complexes with beta2-glycoprotein I: implication as an atherogenic autoantigen. J Lipid Res. 2003;44:716–26.

    CAS  PubMed  Google Scholar 

  22. Louet JF, Coste A, Amazit L, Tannour-Louet M, Wu RC, Tsai SY, et al. Oncogenic steroid receptor coactivator-3 is a key regulator of the white adipogenic program. Proc Natl Acad Sci USA. 2006;103:17868–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Z, Kang Y. Lipid metabolism fuels cancer’s spread. Cell Metab. 2017;25:228–30.

    CAS  PubMed  Google Scholar 

  25. Lin HP, Cheng ZL, He RY, Song L, Tian MX, Zhou LS, et al. Destabilization of fatty acid synthase by acetylation inhibits de novo lipogenesis and tumor cell growth. Cancer Res. 2016;76:6924–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ackerman D, Simon MC. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol. 2014;24:472–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ye H, Adane B, Khan N, Sullivan T, Minhajuddin M, Gasparetto M, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell. 2016;19:23–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature. 2015;520:192–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tregnago C, Manara E, Zampini M, Bisio V, Borga C, Bresolin S, et al. CREB engages C/EBPδ to initiate leukemogenesis. Leukemia. 2016;30:1887–96.

    CAS  PubMed  Google Scholar 

  30. Balamurugan K, Mendoza-Villanueva D, Sharan S, Summers GH, Dobrolecki LE, Lewis MT, et al. C/EBPδ links IL-6 and HIF-1 signaling to promote breast cancer stem cell-associated phenotypes. Oncogene. 2019;38:3765–80.

    CAS  PubMed  Google Scholar 

  31. Mendoza-Villanueva D, Balamurugan K, Ali HR, Kim SR, Sharan S, Johnson RC, et al. The C/EBPδ protein is stabilized by estrogen receptor α activity, inhibits SNAI2 expression and associates with good prognosis in breast cancer. Oncogene. 2016;35:6166–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011;27:347–76.

    CAS  PubMed  Google Scholar 

  33. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, et al. Distinct EMT programs control normal mammary stem cells and tumor-initiating cells. Nature. 2015;525:256–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527:472–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature. 1997;386:73–7.

    CAS  PubMed  Google Scholar 

  36. Hunt JE, Simpson RJ, Krilis SA. Identification of a region of beta 2-glycoprotein I critical for lipid binding and anti-cardiolipin antibody cofactor activity. Proc Natl Acad Sci USA. 1993;90:2141–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. González-Chavarría I, Fernandez E, Gutierrez N, González-Horta EE, Sandoval F, Cifuentes P, et al. LOX-1 activation by oxLDL triggers an epithelial mesenchymal transition and promotes tumorigenic potential in prostate cancer cells. Cancer Lett. 2018;414:34–43.

    PubMed  Google Scholar 

  38. Nishimura S, Akagi M, Yoshida K, Hayakawa S, Sawamura T, Munakata H, et al. Oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular reactive oxygen species (ROS) resulting in the activation of NF-kappaB. Osteoarthr Cartil. 2004;12:568–76.

    Google Scholar 

  39. Lu J, Mitra S, Wang X, Khaidakov M, Mehta JL. Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis. Antioxid Redox Signal. 2011;15:2301–33.

    CAS  PubMed  Google Scholar 

  40. Balzan S, Lubrano V. LOX-1 receptor: A potential link in atherosclerosis and cancer. Life Sci. 2018;198:79–86.

    CAS  PubMed  Google Scholar 

  41. Wang YW, Liou NH, Cherng JH, Chang SJ, Ma KH, Fu E, et al. siRNA-targeting transforming growth factor-β type I receptor reduces wound scarring and extracellular matrix deposition of scar tissue. J Investig Dermatol. 2014;134:2016–25.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr Yan Lu (Zhongshan Hospital, Shanghai) and Zhenfei Li (SIBS, Shanghai) for reading the paper and for discussions throughout the project. This project is supported by funds from the National Natural Science Foundation of China (31770840 to XM, 31800989 to LX, 81902980 to DW, and 81502480 to XC), Shanghai Pujiang Program (17PJ1402600 to XM and 17PJ1402700 to LX), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (TP2017042 to XM), Shanghai Young Top Notch Talents (to XM), the China Postdoctoral Science Foundation (2017M611499 to DW), and ECNU public platform for Innovation (011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinran Ma or Lingyan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were performed in accordance with a protocol approved by the ethics committee of Animal experiments of East China Normal University (Approval Number: m20170208). The lung cancer tissues and adjacent normal tissues were collected from Shanghai Chest Hospital, Affiliated to Shanghai Jiao-Tong University and the patients were informed and agreed to this experiments.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Cheng, X., Li, Y. et al. C/EBPδ-Slug-Lox1 axis promotes metastasis of lung adenocarcinoma via oxLDL uptake. Oncogene 39, 833–848 (2020). https://doi.org/10.1038/s41388-019-1015-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1015-z

Search

Quick links