Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolic targeting of HIF-1α potentiates the therapeutic efficacy of oxaliplatin in colorectal cancer

Abstract

Drug resistance is a major problem limiting the efficacy of chemotherapy in cancer treatment, and the hypoxia-induced stabilization of HIF-1α plays a role in this process. HIF-1α overexpression has been observed in a variety of human cancers, including colorectal cancer (CRC). Therefore, targeting HIF-1α is a promising strategy for overcoming chemoresistance to enhance the efficacy of chemotherapies in CRC. Here, we show that DNMT inhibitors can induce HIF-1α degradation to overcome oxaliplatin resistance and enhance anti-CRC therapy. We found that a low-toxicity DNMT inhibitor, zebularine, could downregulate HIF-1α expression and overcome hypoxia-induced oxaliplatin resistance in HCT116 cells and showed efficacy in HCT116 xenograft models and AOM/DSS-induced CRC mouse models. Zebularine could induce the degradation of HIF-1α protein through hydroxylation. LC-MS analysis showed a decrease in succinate in various CRC cells under hypoxia and in colon tissues of AOM/DSS-induced CRC mice. The decrease was reversed by zebularine. Tumor angiogenesis was also reduced by zebularine. Furthermore, zebularine potentiated the anticancer effect of oxaliplatin in AOM/DSS-induced CRC models. This finding provides a new strategy in which an increase in HIF-1α hydroxylation could overcome oxaliplatin resistance to enhance anti-CRC therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    CAS  PubMed  Google Scholar 

  2. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2012;12:9–22.

    CAS  Google Scholar 

  3. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123:3664–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441:437–43.

    CAS  PubMed  Google Scholar 

  5. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4:437–47.

    CAS  PubMed  Google Scholar 

  6. Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008;15:635–41.

    CAS  PubMed  Google Scholar 

  7. Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 2003;22:4082–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan DA, Sutphin PD, Yen SE, Giaccia AJ. Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol Cell Biol. 2005;25:6415–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Foxler DE, Bridge KS, James V, Webb TM, Mee M, Wong SC, et al. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nat Cell Biol. 2012;14:201–8.

    CAS  PubMed  Google Scholar 

  10. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    CAS  PubMed  Google Scholar 

  11. Lendahl U, Lee KL, Yang H, Poellinger L. Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet. 2009;10:821–32.

    CAS  PubMed  Google Scholar 

  12. Tredan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–54.

    CAS  PubMed  Google Scholar 

  13. Wilson TR, Longley DB, Johnston PG. Chemoresistance in solid tumours. Ann Oncol. 2006;17:315–24.

    Google Scholar 

  14. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.

    CAS  PubMed  Google Scholar 

  15. Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med. 2002;8:S62–7.

    CAS  PubMed  Google Scholar 

  16. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999;59:5830–5.

    CAS  PubMed  Google Scholar 

  17. Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Update. 2011;14:191–201.

    CAS  Google Scholar 

  18. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–91.

    PubMed  Google Scholar 

  20. Thienpont B, Steinbacher J, Zhao H, D’Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang PM, Lin YT, Shun CT, Lin SH, Wei TT, Chuang SH, et al. Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53-dependent endoplasmic reticulum stress. Sci Rep. 2013;3:3219.

    PubMed  PubMed Central  Google Scholar 

  22. Cheng JC, Yoo CB, Weisenberger DJ, Chuang J, Wozniak C, Liang G, et al. Preferential response of cancer cells to zebularine. Cancer cell. 2004;6:151–8.

    CAS  PubMed  Google Scholar 

  23. Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009;27:663–71.

    CAS  PubMed  Google Scholar 

  24. Pientka FK, Hu J, Schindler SG, Brix B, Thiel A, Johren O, et al. Oxygen sensing by the prolyl-4-hydroxylase PHD2 within the nuclear compartment and the influence of compartmentalisation on HIF-1 signalling. J Cell Sci. 2012;125:5168–76.

    CAS  PubMed  Google Scholar 

  25. Berchner-Pfannschmidt U, Tug S, Trinidad B, Oehme F, Yamac H, Wotzlaw C, et al. Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J Biol Chem. 2008;283:31745–53.

    CAS  PubMed  Google Scholar 

  26. Liu L, Ning X, Sun L, Zhang H, Shi Y, Guo C, et al. Hypoxia-inducible factor-1 alpha contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci. 2008;99:121–8.

    CAS  PubMed  Google Scholar 

  27. Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci USA. 2014;111:E5429–38.

    CAS  PubMed  Google Scholar 

  28. Harris AL. Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    CAS  PubMed  Google Scholar 

  29. Rapisarda A, Melillo G. Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat Rev Clin Oncol. 2012;9:378–90.

    CAS  PubMed  Google Scholar 

  30. Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell. 2003;3:363–75.

    CAS  PubMed  Google Scholar 

  31. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118:285–96.

    CAS  PubMed  Google Scholar 

  32. Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–14, e2105.

    CAS  PubMed  Google Scholar 

  33. Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology. 2011;140:1807–16.

    CAS  PubMed  Google Scholar 

  34. Colgan SP, Taylor CT. Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol. 2010;7:281–7.

    PubMed  PubMed Central  Google Scholar 

  35. Remels AH, Gosker HR, Verhees KJ, Langen RC, Schols AM. TNF-alpha-induced NF-kappaB activation stimulates skeletal muscle glycolytic metabolism through activation of HIF-1alpha. Endocrinology. 2015;156:1770–81.

    CAS  PubMed  Google Scholar 

  36. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee K, Zhang H, Qian DZ, Rey S, Liu JO, Semenza GL. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci USA. 2009;106:17910–5.

    CAS  PubMed  Google Scholar 

  38. Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol Cell Biol. 2006;26:2019–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim MS, Lee J, Sidransky D. DNA methylation markers in colorectal cancer. Cancer Metastas Rev. 2010;29:181–206.

    CAS  Google Scholar 

  40. Chen CC, Lee KD, Pai MY, Chu PY, Hsu CC, Chiu CC, et al. Changes in DNA methylation are associated with the development of drug resistance in cervical cancer cells. Cancer Cell Int. 2015;15:98.

    PubMed  PubMed Central  Google Scholar 

  41. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  42. Ma J, Waxman DJ. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther. 2008;7:3670–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    CAS  PubMed  Google Scholar 

  45. Meneses AM, Wielockx B. PHD2: from hypoxia regulation to disease progression. Hypoxia. 2016;4:53–67.

    PubMed  PubMed Central  Google Scholar 

  46. Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ. Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell. 2009;15:527–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wei TT, Lin YT, Chen WS, Luo P, Lin YC, Shun CT, et al. Dual Targeting of 3-Hydroxy-3-methylglutaryl coenzyme a reductase and histone deacetylase as a therapy for colorectal cancer. EBioMedicine. 2016;10:124–36.

    PubMed  PubMed Central  Google Scholar 

Download references

Grant support

This work was supported by a research grant from the National Science Council of Taiwan and the Institute of Biomedical Sciences, Academia Sinica (IBMS-CRC103-P02).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: C-CC. Acquisition of data: T-TW, Y-TL, S-PT, C-KL, C-TT. Analysis and interpretation of data: T-TW, S-PT, C-KLuo, C-TT, C-TS. Drafting of the manuscript: T-TW, Y-TL, C-CC. Critical revision of the manuscript for important intellectual content: C-CC. Statistical analysis: T-TW, Y-TL, S-PT. Obtained funding: C-CC. Technical or material support: C-CC. Study supervision: C-CC.

Corresponding author

Correspondence to Ching-Chow Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, TT., Lin, YT., Tang, SP. et al. Metabolic targeting of HIF-1α potentiates the therapeutic efficacy of oxaliplatin in colorectal cancer. Oncogene 39, 414–427 (2020). https://doi.org/10.1038/s41388-019-0999-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0999-8

This article is cited by

Search

Quick links