Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lactoferrin deficiency induces a pro-metastatic tumor microenvironment through recruiting myeloid-derived suppressor cells in mice

Abstract

Lactoferrin, an innate immunity molecule, is involved in anti-inflammatory, anti-microbial, and anti-tumor activities. We previously reported that lactoferrin is downregulated in specimens of nasopharyngeal carcinoma and negatively associated with tumor progression and metastasis of patients with nasopharyngeal carcinoma. However, the relationship between lactoferrin and the pro-metastatic microenvironment has not been reported yet. Here, by using the lactoferrin knockout mouse, we found that lactoferrin deficiency facilitated melanoma cells metastasizing to lungs, through recruiting myeloid-derived suppressor cells (MDSCs) in the lungs. Mechanistic studies showed that in the lung microenvironment of the lactoferrin knockout mice, the TLR9 signaling was the most repressed signaling. Lactoferrin can induce MDSCs differentiation and apoptosis, as well as upregulate TLR9 expression. TLR9 agonist or lactoferrin treatment can rescue this phenotype in the tumor metastasis mouse model. Our results suggest a protective role of lactoferrin in cancer metastasis, along with a deficiency in certain components of the innate immune system, may lead to a pro-metastatic tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siqueiros-Cendon T, Arevalo-Gallegos S, Iglesias-Figueroa BF, Garcia-Montoya IA, Salazar-Martinez J, Rascon-Cruz Q. Immunomodulatory effects of lactoferrin. Acta Pharmacol Sin. 2014;35:557–566.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Legrand D. Lactoferrin, a key molecule in immune and inflammatory processes. Biochem Cell Biol. 2012;90:252–268.

    CAS  PubMed  Google Scholar 

  3. Teng CT. Lactoferrin: the path from protein to gene. Biometals. 2010;23:359–364.

    CAS  PubMed  Google Scholar 

  4. Rodrigues L, Teixeira J, Schmitt F, Paulsson M, Mansson HL. Lactoferrin and cancer disease prevention. Crit Rev Food Sci Nutr. 2009;49:203–217.

    CAS  PubMed  Google Scholar 

  5. Gonzalez-Chavez SA, Arevalo-Gallegos S, Rascon-Cruz Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents. 2009;33:301 e301–308.

    Google Scholar 

  6. Telang S. Lactoferrin: a critical player in neonatal host defense. Nutrients. 2018;10:E1228.

    PubMed  Google Scholar 

  7. Moreno-Exposito L, Illescas-Montes R, Melguizo-Rodriguez L, Ruiz C, Ramos-Torrecillas J, de Luna-Bertos E. Multifunctional capacity and therapeutic potential of lactoferrin. Life Sci. 2018;195:61–64.

    CAS  PubMed  Google Scholar 

  8. Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: structure, function, denaturation and digestion. Crit Rev Food Sci Nutr. 2019;59:580–596.

    CAS  PubMed  Google Scholar 

  9. Deng M, Zhang W, Tang H, Ye Q, Liao Q, Zhou Y, et al. Lactotransferrin acts as a tumor suppressor in nasopharyngeal carcinoma by repressing AKT through multiple mechanisms. Oncogene. 2013;32:4273–4283.

    CAS  PubMed  Google Scholar 

  10. Zhou Y, Zeng Z, Zhang W, Xiong W, Wu M, Tan Y, et al. Lactotransferrin: a candidate tumor suppressor-Deficient expression in human nasopharyngeal carcinoma and inhibition of NPC cell proliferation by modulating the mitogen-activated protein kinase pathway. Int J Cancer. 2008;123:2065–2072.

    CAS  PubMed  Google Scholar 

  11. Zhang W, Fan S, Zou G, Shi L, Zeng Z, Ma J, et al. Lactotransferrin could be a novel independent molecular prognosticator of nasopharyngeal carcinoma. Tumour Biol. 2015;36:675–683.

    PubMed  Google Scholar 

  12. Ye Q, Zheng Y, Fan S, Qin Z, Li N, Tang A, et al. Lactoferrin deficiency promotes colitis-associated colorectal dysplasia in mice. PloS ONE. 2014;9:e103298.

    PubMed  PubMed Central  Google Scholar 

  13. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591–5596.

    CAS  PubMed  Google Scholar 

  14. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–15550.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5:3–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, et al. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2008;14:8270–8278.

    CAS  PubMed  Google Scholar 

  18. Condamine T, Mastio J, Gabrilovich DI. Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol. 2015;98:913–922.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67:9518–9527.

    CAS  PubMed  Google Scholar 

  20. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Investig. 2006;116:2777–2790.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Raber P, Ochoa AC, Rodriguez PC. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Investig. 2012;41:614–634.

    CAS  Google Scholar 

  22. Amit I, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T, et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science. 2009;326:257–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Martinez-Campos C, Burguete-Garcia AI, Madrid-Marina V. Role of TLR9 in oncogenic virus-produced cancer. Viral Immunol. 2017;30:98–105.

    CAS  PubMed  Google Scholar 

  24. Won H, Moreira D, Gao C, Duttagupta P, Zhao X, Manuel E, et al. TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs. J Leukoc Biol. 2017;102:423–436.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N, et al. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res. 2011;17:1765–1775.

    CAS  PubMed  Google Scholar 

  26. Ballas ZK, Krieg AM, Warren T, Rasmussen W, Davis HL, Waldschmidt M, et al. Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J Immunol. 2001;167:4878–4886.

    CAS  PubMed  Google Scholar 

  27. Li HY, Li M, Luo CC, Wang JQ, Zheng N. Lactoferrin exerts antitumor effects by inhibiting angiogenesis in a HT29 human colon tumor model. J Agric Food Chem. 2017;65:10464–10472.

    CAS  PubMed  Google Scholar 

  28. Casey T, Bond J, Tighe S, Hunter T, Lintault L, Patel O, et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat. 2009;114:47–62.

    CAS  PubMed  Google Scholar 

  29. Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martinez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, et al. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PloS ONE. 2013;8:e74250.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–252.

    CAS  PubMed  Google Scholar 

  31. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–550.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Takahashi K, Ehata S, Koinuma D, Morishita Y, Soda M, Mano H, et al. Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells. Oncogene. 2018;37:2757–2772.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150:165–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10:1349–1355.

    CAS  PubMed  Google Scholar 

  35. Yang Q, Li X, Chen H, Cao Y, Xiao Q, He Y, et al. IRF7 regulates the development of granulocytic myeloid-derived suppressor cells through S100A9 transrepression in cancer. Oncogene. 2017;36:2969–2980.

    CAS  PubMed  Google Scholar 

  36. Castano Z, San Juan BP, Spiegel A, Pant A, DeCristo MJ, Laszewski T, et al. IL-1beta inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol. 2018;20:1084–1097.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fang L, Wu S, Zhu X, Cai J, Wu J, He Z. et al. MYEOV functions as an amplified competing endogenous RNA in promoting metastasis by activating TGF-beta pathway in NSCLC. Oncogene. 2019;38:896–912.

    CAS  PubMed  Google Scholar 

  38. Xie F, Ling L, van Dam H, Zhou F, Zhang L. TGF-beta signaling in cancer metastasis. Acta Biochim Biophys Sin. 2018;50:121–132.

    CAS  PubMed  Google Scholar 

  39. Wang C, Ma HX, Jin MS, Zou YB, Teng YL, Tian Z, et al. Association of matrix metalloproteinase (MMP)-2 and -9 expression with extra-gastrointestinal stromal tumor metastasis. Asian Pac J Cancer Prev. 2014;15:4187–4192.

    PubMed  Google Scholar 

  40. Jiang J, Wang GZ, Wang Y, Huang HZ, Li WT, Qu XD. Hypoxia-induced HMGB1 expression of HCC promotes tumor invasiveness and metastasis via regulating macrophage-derived IL-6. Exp Cell Res. 2018;367:81–88.

    CAS  PubMed  Google Scholar 

  41. Kundu ST, Grzeskowiak CL, Fradette JJ, Gibson LA, Rodriguez LB, Creighton CJ, et al. TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nat Commun. 2018;9:2731.

    PubMed  PubMed Central  Google Scholar 

  42. Ruffell B, Affara NI, Cottone L, Junankar S, Johansson M, DeNardo DG, et al. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev. 2013;27:2086–2098.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kolonin MG, Sergeeva A, Staquicini DI, Smith TL, Tarleton CA, Molldrem JJ, et al. Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone. Cancer Res. 2017;77:3144–3150.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee JH, Cho HS, Lee JJ, Jun SY, Ahn JH, Min JS, et al. Plasma glutamate carboxypeptidase is a negative regulator in liver cancer metastasis. Oncotarget. 2016;7:79774–79786.

    PubMed  PubMed Central  Google Scholar 

  45. Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J Biol Chem. 2014;289:17406–17415.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Uchida R, Aoki R, Aoki-Yoshida A, Tajima A, Takayama Y. Promoting effect of lactoferrin on barrier function and epithelial differentiation of human keratinocytes. Biochem Cell Biol. 2017;95:64–68.

    CAS  PubMed  Google Scholar 

  47. Blais A, Fan C, Voisin T, Aattouri N, Dubarry M, Blachier F, et al. Effects of lactoferrin on intestinal epithelial cell growth and differentiation: an in vivo and in vitro study. Biometals. 2014;27:857–874.

    CAS  PubMed  Google Scholar 

  48. Vandrovcova M, Douglas TE, Heinemann S, Scharnweber D, Dubruel P, Bacakova L. Collagen-lactoferrin fibrillar coatings enhance osteoblast proliferation and differentiation. J Biomed Mater Res A. 2015;103:525–533.

    PubMed  Google Scholar 

  49. Kitakaze T, Oshimo M, Kobayashi Y, Ryu M, Suzuki YA, Inui H, et al. Lactoferrin promotes murine C2C12 myoblast proliferation and differentiation and myotube hypertrophy. Mol Med Rep. 2018;17:5912–5920.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tasli PN, Sahin F. Effect of lactoferrin on odontogenic differentiation of stem cells derived from human 3rd molar tooth germ. Appl Biochem Biotechnol. 2014;174:2257–2266.

    CAS  PubMed  Google Scholar 

  51. Perdijk O, van Neerven RJJ, van den Brink E, Savelkoul HFJ, Brugman S. Bovine lactoferrin modulates dendritic cell differentiation and function. Nutrients. 2018;10:E848.

    PubMed  Google Scholar 

  52. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008;222:162–179.

    CAS  PubMed  Google Scholar 

  53. Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 2012;72:3125–3130.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol. 2006;8:1369–1375.

    CAS  PubMed  Google Scholar 

  55. Zhang H, Ye YL, Li MX, Ye SB, Huang WR, Cai TT, et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene. 2017;36:2095–2104.

    CAS  PubMed  Google Scholar 

  56. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell. 2008;13:23–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Huh SJ, Liang S, Sharma A, Dong C, Robertson GP. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 2010;70:6071–6082.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011;9:133–148.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Oh K, Lee OY, Shon SY, Nam O, Ryu PM, Seo MW, et al. A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 trans-signaling in a murine model. Breast Cancer Res. 2013;15:R79.

    PubMed  PubMed Central  Google Scholar 

  60. Ortiz ML, Lu L, Ramachandran I, Gabrilovich DI. Myeloid-derived suppressor cells in the development of lung cancer. Cancer Immunol Res. 2014;2:50–58.

    CAS  PubMed  Google Scholar 

  61. Simpson KD, Templeton DJ, Cross JV. Macrophage migration inhibitory factor promotes tumor growth and metastasis by inducing myeloid-derived suppressor cells in the tumor microenvironment. J Immunol. 2012;189:5533–5540.

    CAS  PubMed  Google Scholar 

  62. He YM, Li X, Perego M, Nefedova Y, Kossenkov AV, Jensen EA, et al. Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation. Nat Med. 2018;24:224–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Velusamy SK, Ganeshnarayan K, Markowitz K, Schreiner H, Furgang D, Fine DH, et al. Lactoferrin knockout mice demonstrates greater susceptibility to Aggregatibacter actinomycetemcomitans-induced periodontal disease. J Periodontol. 2013;84:1690–1701.

    CAS  PubMed  Google Scholar 

  64. Velusamy SK, Poojary R, Ardeshna R, Alabdulmohsen W, Fine DH, Velliyagounder K. Protective effects of human lactoferrin during Aggregatibacter actinomycetemcomitans-induced bacteremia in lactoferrin-deficient mice. Antimicrob Agents Chemother. 2014;58:397–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cen X, Liu S, Cheng K. The role of toll-like receptor in inflammation and tumor immunity. Front Pharmacol. 2018;9:878.

    PubMed  PubMed Central  Google Scholar 

  66. Maglione PJ, Simchoni N, Cunningham-Rundles C. Toll-like receptor signaling in primary immune deficiencies. Ann N Y Acad Sci. 2015;1356:1–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lim KH, Staudt LM. Toll-like receptor signaling. Cold Spring Harb Perspect Biol. 2013;5:a011247.

    PubMed  PubMed Central  Google Scholar 

  68. Hossain DM, Pal SK, Moreira D, Duttagupta P, Zhang Q, Won H, et al. TLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. Clin Cancer Res. 2015;21:3771–3782.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zambirinis CP, Levie E, Nguy S, Avanzi A, Barilla R, Xu Y, et al. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J Exp Med. 2015;212:2077–2094.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Silvestrini MT, Ingham ES, Mahakian LM, Kheirolomoom A, Liu Y, Fite BZ, et al. Priming is key to effective incorporation of image-guided thermal ablation into immunotherapy protocols. JCI insight. 2017;2:e90521.

    PubMed  PubMed Central  Google Scholar 

  71. Fehri E, Ennaifer E, Bel Haj Rhouma R, Guizani-Tabbane L, Guizani I, Boubaker S. The role of toll-like receptor 9 in gynecologic cancer. Curr Res Transl Med. 2016;64:155–159.

    CAS  PubMed  Google Scholar 

  72. Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev. 2018;281:57–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang CX, Ye SB, Ni JJ, Cai TT, Liu YN, Huang DJ et al. STING signaling remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cell expansion. Cell Death Differ. 2019. https://doi.org/10.1038/s41418-019-0302-0.

    CAS  Google Scholar 

  74. Mei S, Xin J, Liu Y, Zhang Y, Liang X, Su X, et al. MicroRNA-200c promotes suppressive potential of myeloid-derived suppressor cells by modulating PTEN and FOG2 expression. PLoS ONE. 2015;10:e0135867.

    PubMed  PubMed Central  Google Scholar 

  75. Aghaeepour N, Kin C, Ganio EA, Jensen KP, Gaudilliere DK, Tingle M. et al. Deep immune profiling of an arginine-enriched nutritional intervention in patients undergoing surgery. J Immunol. 2017;199:2171–2180.

    CAS  Google Scholar 

  76. Ribechini E, Hutchinson JA, Hergovits S, Heuer M, Lucas J, Schleicher U, et al. Novel GM-CSF signals via IFN-gammaR/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Adv. 2017;1:947–960.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J, et al. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Investig. 2018;128:5647–5662.

    PubMed  PubMed Central  Google Scholar 

  78. Clavijo PE, Friedman J, Robbins Y, Moore EC, Smith E, Zauderer M, et al. Semaphorin 4D inhibition improves response to immune-checkpoint blockade via attenuation of MDSC recruitment and function. Cancer Immunol Res. 2019;7:282–291.

    PubMed  Google Scholar 

  79. Totiger TM, Srinivasan S, Jala VR, Lamichhane P, Dosch AR, Gaidarski AA 3rd, et al. Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer. Mol Cancer Ther. 2019;18:301–311.

    CAS  PubMed  Google Scholar 

  80. Valenti P, Vogel HJ. Lactoferrin, all roads lead to Rome. Biometals. 2014;27:803–806.

    CAS  PubMed  Google Scholar 

  81. Wakabayashi H, Oda H, Yamauchi K, Abe F. Lactoferrin for prevention of common viral infections. J Infect Chemother. 2014;20:666–671.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (81672889, 81874170, and 81472694), China 111 Project (111-2-12), Hunan Province Science and Technology Project (2016JC2035), Open Research Fund Program of Key Laboratory of Translational Radiation Oncology, Hunan Province (2015TP1009), Independent Exploration and Innovation Project of Central South University (178301003), and National College Students’ Innovation and Entrepreneurship Training Program of China (201810533376, GS201910533237). We thank Professors Wen Zhou and Ya Cao for providing reagents; Professor Penghui Zhou providing key suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: LW and JM. Development of methodology: LW., XZ, JW, QY, and YZ. Acquisition of data: XZ, QP, PL, XZ, ZL, CL, and QY. Analysis and interpretation of data: LW, JW, XZ, and JM. Writing: LW and JM. Study supervision: GL and JM.

Corresponding author

Correspondence to Jian Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Zhang, X., Wang, J. et al. Lactoferrin deficiency induces a pro-metastatic tumor microenvironment through recruiting myeloid-derived suppressor cells in mice. Oncogene 39, 122–135 (2020). https://doi.org/10.1038/s41388-019-0970-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0970-8

This article is cited by

Search

Quick links