Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic interactions between the extracellular matrix and estrogen activity in progression of ER+ breast cancer

Abstract

Metastatic, antiestrogen resistant estrogen receptor α positive (ER+) breast cancer is the leading cause of breast cancer deaths in USA women. While studies have demonstrated the importance of the stromal tumor microenvironment in cancer progression and therapeutic responses, effects on the responses of ER+ cancers to estrogen and antiestrogens are poorly understood, particularly in the complex in vivo environment. In this study, we used an estrogen responsive syngeneic mouse model to interrogate how a COL1A1-enriched fibrotic ECM modulates integrated hormonal responses in cancer progression. We orthotopically transplanted the ER+ TC11 cell line into wild-type (WT) or collagen-dense (Col1a1tm1Jae/+, mCol1a1) syngeneic FVB/N female mice. Once tumors were established, recipients were supplemented with 17β-estradiol (E2), tamoxifen, or left untreated. Although the dense/stiff environment in mCol1a1 recipients did not alter the rate of E2-induced proliferation of the primary tumor, it fostered the agonist activity of tamoxifen to increase proliferation and AP-1 activity. Manipulation of estrogen activity did not alter the incidence of lung lesions in either WT or mCol1a1 hosts. However, the mCol1a1 environment enabled tamoxifen-stimulated growth of pulmonary metastases and further fueled estrogen-driven growth. Moreover, E2 remodeled peritumoral ECM architecture in WT animals, modifying alignment of collagen fibers and altering synthesis of ECM components associated with increased alignment and stiffness, and increasing FN1 and POSTN expression in the pulmonary metastatic niche. These studies demonstrate dynamic interactions between ECM properties and estrogen activity in progression of ER+ breast cancer, and support the need for therapeutics that target both ER and the tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Keely PJ. Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia. 2011;16:205–19.

    Article  PubMed  Google Scholar 

  2. Cox TR, Erler JT. Molecular pathways: connecting fibrosis and solid tumor metastasis. Clin Cancer Res. 2014;20:3637–43.

    Article  CAS  PubMed  Google Scholar 

  3. Kaushik S, Pickup MW, Weaver VM. From transformation to metastasis: deconstructing the extracellular matrix in breast cancer. Cancer Metastasis Rev. 2016;35:655–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robertson C. The extracellular matrix in breast cancer predicts prognosis through composition, splicing, and crosslinking. Exp Cell Res. 2016;343:73–81.

    Article  CAS  PubMed  Google Scholar 

  5. Al-Adnani MS, Kirrane JA, McGee JO. Inappropriate production of collagen and prolyl hydroxylase by human breast cancer cells in vivo. Br J Cancer. 1975;31:653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walker RA. The complexities of breast cancer desmoplasia. Breast Cancer Res. 2001;3:143–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson WF, Katki HA, Rosenberg PS. Incidence of breast cancer in the United States: current and future trends. J Natl Cancer Inst. 2011;103:1397–402.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178:1221–32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nardone A, De Angelis C, Trivedi MV, Osborne CK, Schiff R. The changing role of ER in endocrine resistance. Breast. 2015;24 Suppl 2:S60–6.

    Article  PubMed  Google Scholar 

  10. Nagaraj G, Ma C. Revisiting the estrogen receptor pathway and its role in endocrine therapy for postmenopausal women with estrogen receptor-positive metastatic breast cancer. Breast Cancer Res Treat. 2015;150:231–42.

    Article  CAS  PubMed  Google Scholar 

  11. Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 Years. New Engl J Med. 2017;377:1836–46.

    Article  PubMed  Google Scholar 

  12. Byrne C, Ursin G, Martin CF, Peck JD, Cole EB, Zeng D, et al. Mammographic density change with estrogen and progestin therapy and breast cancer risk. J Natl Cancer Inst. 2017;109:djx001, https://doi.org/10.1093/jnci/djx001.

  13. Bertrand KA, Eliassen AH, Hankinson SE, Rosner BA, Tamimi RM. Circulating hormones and mammographic density in premenopausal women. Horm Cancer. 2018;9:117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem. 2013;288:12722–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barcus CE, Holt EC, Keely PJ, Eliceiri KW, Schuler LA. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS ONE. 2015;10:e0116891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093–106.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Burstein HJ, Temin S, Anderson H, Buchholz TA, Davidson NE, Gelmon KE, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: american society of clinical oncology clinical practice guideline focused update. J Clin Oncol. 2014;32:2255–69.

    Article  PubMed  PubMed Central  Google Scholar 

  18. O’Leary KA, Shea MP, Schuler LA. Modeling prolactin actions in breast cancer in vivo: insights from the NRL-PRL mouse. Adv Exp Med Biol. 2015;846:201–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jallow F, Brockman JL, Helzer KT, Rugowski DE, Goffin V, Alarid ET, et al. 17beta-estradiol and ICI182,780 differentially regulate STAT5 isoforms in female mammary epithelium, with distinct outcomes. J Endoc Soc. 2018;2:293–309.

    Article  CAS  Google Scholar 

  20. Campbell KM, O’Leary KA, Rugowski DE, Mulligan WA, Barnell EK, Skidmore ZL, et al. A spontaneous aggressive ERα+ mammary tumor model is driven by Kras activation. Cell Rep. 2019;28:1526–1537.

  21. Liu X, Wu H, Byrne M, Jeffrey J, Krane S, Jaenisch R. A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J Cell Biol. 1995;130:227–37.

    Article  CAS  PubMed  Google Scholar 

  22. Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res. 2008;68:3108–14.

    Article  CAS  PubMed  Google Scholar 

  23. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28:3271–7.

    Article  PubMed  Google Scholar 

  24. Molnar IA, Molnar BA, Vizkeleti L, Fekete K, Tamas J, Deak P, et al. Breast carcinoma subtypes show different patterns of metastatic behavior. Virchows Arch. 2017;470:275–83.

    Article  CAS  PubMed  Google Scholar 

  25. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barcus CE, O’Leary KA, Brockman JL, Rugowski DE, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shea MP, O’Leary KA, Wegner KA, Vezina CM, Schuler LA. High collagen density augments mTOR-dependent cancer stem cells in ERα+ mammary carcinomas, and increases mTOR-independent lung metastases. Cancer Lett. 2018;433:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar R, Gururaj AE, Barnes CJ. p21-activated kinases in cancer. Nat Rev Cancer. 2006;6:459–71.

    Article  CAS  PubMed  Google Scholar 

  30. Holm C, Rayala S, Jirstrom K, Stal O, Kumar R, Landberg G. Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. J Natl Cancer Inst. 2006;98:671–80.

    Article  CAS  PubMed  Google Scholar 

  31. Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, et al. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci USA. 2011;108:7177–82.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dumont JA, Bitonti AJ, Wallace CD, Baumann RJ, Cashman EA, Cross-Doersen DE. Progression of MCF-7 breast cancer cells to antiestrogen-resistant phenotype is accompanied by elevated levels of AP-1 DNA-binding activity. Cell Growth Differ. 1996;7:351–9.

    CAS  PubMed  Google Scholar 

  33. Smith LM, Wise SC, Hendricks DT, Sabichi AL, Bos T, Reddy P, et al. cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype. Oncogene. 1999;18:6063–70.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Y, Yau C, Gray JW, Chew K, Dairkee SH, Moore DH, et al. Enhanced NF kappa B and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer. 2007;7:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Malorni L, Giuliano M, Migliaccio I, Wang T, Creighton CJ, Lupien M, et al. Blockade of AP-1 potentiates endocrine therapy and overcomes resistance. Mol Cancer Res. 2016;14:470–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He H, Sinha I, Fan R, Haldosen LA, Yan F, Zhao C, et al. c-Jun/AP-1 overexpression reprograms ERα signaling related to tamoxifen response in ERα-positive breast cancer. Oncogene. 2018;37:2586–2600.

    Article  CAS  PubMed  Google Scholar 

  37. Johnston SR, Lu B, Scott GK, Kushner PJ, Smith IE, Dowsett M, et al. Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance. Clin Cancer Res. 1999;5:251–6.

    CAS  PubMed  Google Scholar 

  38. Insua-Rodriguez J, Pein M, Hongu T, Meier J, Descot A, Lowy CM, et al. Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. EMBO Mol Med. 2018;10:e9003. https://doi.org/10.15252/emmm.201809003.

  39. Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, et al. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol. 2000;74:311–7.

    Article  CAS  PubMed  Google Scholar 

  40. Jakacka M, Ito M, Weiss J, Chien PY, Gehm BD, Jameson JL. Estrogen receptor binding to DNA is not required for its activity through the nonclassical AP1 pathway. J Biol Chem. 2001;276:13615–21.

    Article  CAS  PubMed  Google Scholar 

  41. Cheung E, Acevedo ML, Cole PA, Kraus WL. Altered pharmacology and distinct coactivator usage for estrogen receptor-dependent transcription through activating protein-1. Proc Natl Acad Sci USA. 2005;102:559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shaulian E, Karin M. AP-1 as a regulator of cell life and death1. Nat Cell Biol. 2002;4:E131–6.

    Article  CAS  PubMed  Google Scholar 

  43. Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer. 2003;3:859–68.

    Article  CAS  PubMed  Google Scholar 

  44. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol. 2015;17:1218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Houthuijzen JM, Jonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev. 2018;37:577–597.

  47. Tomko LA, Hill RC, Barrett A, Szulczewski JM, Conklin MW, Eliceiri KW, et al. Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma. Sci Rep. 2018;8:12941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gyorfi AH, Matei AE, Distler JHW. Targeting TGF-beta signaling for the treatment of fibrosis. Matrix Biol. 2018;68-69:8–27.

    Article  CAS  PubMed  Google Scholar 

  49. Socovich AM, Naba A. The cancer matrisome: from comprehensive characterization to biomarker discovery. Sem Cell Dev Biol. 2019;89:157–66.

    Article  CAS  Google Scholar 

  50. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med. 2011;17:867–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Evans A, Sim YT, Pourreyron C, Thompson A, Jordan L, Fleming D, et al. Pre-operative stromal stiffness measured by shear wave elastography is independently associated with breast cancer-specific survival. Breast Cancer Res Treat. 2018;171:383–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, et al. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through beta1 integrin. Breast Cancer Res Treat. 2012;133:459–71.

    Article  CAS  PubMed  Google Scholar 

  55. Wernig G, Chen SY, Cui L, Van Neste C, Tsai JM, Kambham N, et al. Unifying mechanism for different fibrotic diseases. Proc Natl Acad Sci USA. 2017;114:4757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Clark IM, Swingler TE, Sampieri CL, Edwards DR. The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol. 2008;40:1362–78.

    Article  CAS  PubMed  Google Scholar 

  57. Shen Q, Uray IP, Li Y, Krisko TI, Strecker TE, Kim HT, et al. The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene. 2008;27:366–77.

    Article  CAS  PubMed  Google Scholar 

  58. Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res. 2016;343:42–53.

    Article  CAS  PubMed  Google Scholar 

  59. Webb P, Lopez GN, Uht RM, Kushner PJ. Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol. 1995;9:443–56.

    CAS  PubMed  Google Scholar 

  60. Lupien M, Meyer CA, Bailey ST, Eeckhoute J, Cook J, Westerling T, et al. Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance. Genes Dev. 2010;24:2219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, et al. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res. 2008;68:826–33.

    Article  CAS  PubMed  Google Scholar 

  62. Haslam SZ, Woodward TL. Reciprocal regulation of extracellular matrix proteins and ovarian steroid activity in the mammary gland. Breast Cancer Res. 2001;3:365–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Calvo E, Luu-The V, Belleau P, Martel C, Labrie F. Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland. Breast Cancer Res Treat. 2012;134:625–47.

    Article  CAS  PubMed  Google Scholar 

  64. Hattar R, Maller O, McDaniel S, Hansen KC, Hedman KJ, Lyons TR, et al. Tamoxifen induces pleiotrophic changes in mammary stroma resulting in extracellular matrix that suppresses transformed phenotypes. Breast Cancer Res. 2009;11:R5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goddard ET, Hill RC, Nemkov T, D’Alessandro A, Hansen KC, Maller O, et al. The rodent liver undergoes weaning-Induced involution and supports breast cancer metastasis. Cancer Discov. 2017;7:177–87.

    Article  CAS  PubMed  Google Scholar 

  66. Helleman J, Jansen MP, Ruigrok-Ritstier K, Van Staveren IL, Look MP, Meijer-van Gelder ME, et al. Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response. Clin Cancer Res. 2008;14:5555–64.

    Article  CAS  PubMed  Google Scholar 

  67. Kim KK, Sheppard D, Chapman HA. TGF-beta1 signaling and tissue fibrosis. Cold Spring Harbor Perspect Biol. 2018, https://doi.org/10.1101/cshperspect.a022293.

  68. Sampayo RG, Toscani AM, Rubashkin MG, Thi K, Masullo LA, Violi IL, et al. Fibronectin rescues estrogen receptor alpha from lysosomal degradation in breast cancer cells. J Cell Biol. 2018;217:2777–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Svoronos N, Perales-Puchalt A, Allegrezza MJ, Rutkowski MR, Payne KK, Tesone AJ, et al. Tumor cell-independent estrogen signaling drives disease progression through mobilization of myeloid-derived suppressor cells. Cancer Discov. 2017;7:72–85.

    Article  CAS  PubMed  Google Scholar 

  70. Dabrosin C, Margetts PJ, Gauldie J. Estradiol increases extracellular levels of vascular endothelial growth factor in vivo in murine mammary cancer. Int J Cancer. 2003;107:535–40.

    Article  CAS  PubMed  Google Scholar 

  71. Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, et al. 27-hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 2013;342:1094–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9:302–12.

    Article  CAS  PubMed  Google Scholar 

  73. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kang JS, Kang MR, Han SB, Yoon WK, Kim JH, Lee TC, et al. Low dose estrogen supplementation reduces mortality of mice in estrogen-dependent human tumor xenograft model. Biol Pharm Bull. 2009;32:150–2.

    Article  CAS  PubMed  Google Scholar 

  75. Gerard C, Gallez A, Dubois C, Drion P, Delahaut P, Quertemont E, et al. Accurate control of 17beta-estradiol long-term release increases reliability and reproducibility of preclinical animal studies. J Mammary Gland Biol Neoplasia. 2017;22:1–11.

    Article  PubMed  Google Scholar 

  76. Esbona K, Yi Y, Saha S, Yu M, Van Doorn RR, Conklin MW, et al. The presence of cyclooxygenase 2, tumor-associated macrophages, and collagen alignment as prognostic markers for invasive breast carcinoma patients. Am J Pathol. 2018;188:559–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wegner KA, Keikhosravi A, Eliceiri KW, Vezina CM. Fluorescence of picrosirius red multiplexed with immunohistochemistry for the quantitative assessment of collagen in tissue sections. J Histochem Cytochem. 2017;65:479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu Y, Keikhosravi A, Mehta GS, Drifka CR, Eliceiri KW. Methods for quantifying fibrillar collagen alignment. Methods Mol Biol. 2017;1627:429–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Kyle Wegner for assistance with picrosirius red staining and image processing, and Ashley Weichmann in the UW Carbone Cancer Center Small Animal Imaging Facility for assistance with the tail vein injections. We are grateful to Dr Elaine Alarid for helpful discussions.

Funding

This work was supported by the National Institutes of Health [R01 CA157675 (LAS) and R01 CA179556 (LAS, SMP), T32 HD041921 and R25 GM083252 (FJ), and P30CA014520 (University of Wisconsin Carbone Cancer Center)], and funds from the UWCCC Breast Disease Oriented Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda A. Schuler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jallow, F., O’Leary, K.A., Rugowski, D.E. et al. Dynamic interactions between the extracellular matrix and estrogen activity in progression of ER+ breast cancer. Oncogene 38, 6913–6925 (2019). https://doi.org/10.1038/s41388-019-0941-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0941-0

This article is cited by

Search

Quick links