Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The MRVI1-AS1/ATF3 signaling loop sensitizes nasopharyngeal cancer cells to paclitaxel by regulating the Hippo–TAZ pathway

Abstract

Long non-coding RNA (lncRNA) plays an important role in malignant tumor occurrence, development, and chemoresistance, but the mechanism of how they affect nasopharyngeal cancer (NPC) paclitaxel chemosensitivity is unclear. In this study, lncRNA array of CNE-1 and HNE-2 paclitaxel-resistant cells and their parental strains revealed that the paclitaxel-resistant strains had significantly lower MRVI1-AS1 (murine retrovirus integration site 1 homolog antisense RNA 1) expression than the parental strains, and that MRVI1-AS1 overexpression in vitro and in vivo increased paclitaxel chemosensitivity. Further, MRVI1-AS1 upregulated ATF3 (activating transcription factor 3) by simultaneously inhibiting miR-513a-5p (microRNA-513a-5p) and miR-27b-3p expression levels to increase NPC paclitaxel chemosensitivity. Chromatin immunoprecipitation and quantitative real-time PCR showed that ATF3 could feed-back MRVI1-AS1 regulation positively. Furthermore, MRVI1-AS1 and ATF3 could form a positive feedback loop, which promoted the expression of RASSF1 (Ras association domain family member 1), a Hippo–TAZ (tafazzin) signaling pathway regulatory factor, thereby inhibiting TAZ expression. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assay and flow cytometry showed that the decreased TAZ increased NPC cell paclitaxel chemosensitivity. Overall, the results indicate that the MRVI1-AS1/ATF3 signaling pathway can increase NPC paclitaxel chemosensitivity by modulating the Hippo–TAZ signaling pathway. Therefore, targeting the loop may be a new NPC treatment strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lo KW, Chung GT, To KF. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol. 2012;22:79–86. https://doi.org/10.1016/j.semcancer.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  2. Blanchard P, Lee A, Marguet S, Leclercq J, Ng WT, Ma J, et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol. 2015;16:645–55. https://doi.org/10.1016/S1470-2045(15)70126-9

    Article  PubMed  Google Scholar 

  3. Lin JC, Jan JS, Hsu CY, Liang WM, Jiang RS, Wang WY. Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. J Clin Oncol. 2003;21:631–7. https://doi.org/10.1200/jco.2003.06.158

    Article  PubMed  Google Scholar 

  4. You R, Cao YS, Huang PY, Chen L, Yang Q, Liu YP, et al. The changing therapeutic role of chemo-radiotherapy for loco-regionally advanced nasopharyngeal carcinoma from two/three-dimensional radiotherapy to intensity-modulated radiotherapy: a network meta-analysis. Theranostics. 2017;7:4825–35. https://doi.org/10.7150/thno.21815

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin C, Yang L, Long Noncoding RNA. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 2018;28:287–301. https://doi.org/10.1016/j.tcb.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  6. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62. https://doi.org/10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  7. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17:272–83. https://doi.org/10.1038/nrg.2016.20

    Article  CAS  PubMed  Google Scholar 

  8. van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, et al. Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol. 2014;15:R6. https://doi.org/10.1186/gb-2014-15-1-r6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29:452–63. https://doi.org/10.1016/j.ccell.2016.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. 2017;16:167–79. https://doi.org/10.1038/nrd.2016.117

    Article  CAS  PubMed  Google Scholar 

  11. Xiong H, Ni Z, He J, Jiang S, Li X, He J, et al. LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells. Oncogene. 2017;36:3528–40. https://doi.org/10.1038/onc.2016.521

    Article  CAS  PubMed  Google Scholar 

  12. Guo Z, Wang Y, Zhao Y, Jin Y, An L, Wu B, et al. Genetic polymorphisms of long non-coding RNA GAS5 predict platinum-based concurrent chemoradiotherapy response in nasopharyngeal carcinoma patients. Oncotarget. 2017;8:62286–97. https://doi.org/10.18632/oncotarget.19725

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ren S, Li G, Liu C, Cai T, Su Z, Wei M, et al. Next generation deep sequencing identified a novel lncRNA n375709 associated with paclitaxel resistance in nasopharyngeal carcinoma. Oncol Rep. 2016;36:1861–7. https://doi.org/10.3892/or.2016.4981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Q, Zhang W, Hao S. LncRNA CCAT1 modulates the sensitivity of paclitaxel in nasopharynx cancers cells via miR-181a/CPEB2 axis. Cell Cycle. 2017;16:795–801. https://doi.org/10.1080/15384101.2017.1301334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu J, Ben Q, Lu E, He X, Yang X, Ma J, et al. Long noncoding RNA PANDAR blocks CDKN1A gene transcription by competitive interaction with p53 protein in gastric cancer. Cell Death Dis. 2018;9:168. https://doi.org/10.1038/s41419-017-0246-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun Y, Hu B, Wang Q, Ye M, Qiu Q, Zhou Y, et al. Long non-coding RNA HOTTIP promotes BCL-2 expression and induces chemoresistance in small cell lung cancer by sponging miR-216a. Cell Death Dis. 2018;9:85. https://doi.org/10.1038/s41419-017-0113-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang S, Liang K, Hu Q, Li P, Song J, Yang Y, et al. JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. J Clin Investig. 2017;127:4498–515. https://doi.org/10.1172/jci91553

    Article  PubMed  Google Scholar 

  18. Muti P, Donzelli S, Sacconi A, Hossain A, Ganci F, Frixa T, et al. MiRNA-513a-5p inhibits progesterone receptor expression and constitutes a risk factor for breast cancer: the hOrmone and Diet in the ETiology of breast cancer prospective study. Carcinogenesis. 2018;39:98–108. https://doi.org/10.1093/carcin/bgx126

    Article  CAS  PubMed  Google Scholar 

  19. Shen S, Sun Q, Liang Z, Cui X, Ren X, Chen H, et al. A prognostic model of triple-negative breast cancer based on miR-27b-3p and node status. PLoS ONE. 2014;9:e100664. https://doi.org/10.1371/journal.pone.0100664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Rathinam R, Walch A, Alahari SK. ST14 (suppression of tumorigenicity 14) gene is a target for miR-27b, and the inhibitory effect of ST14 on cell growth is independent of miR-27b regulation. J Biol Chem. 2009;284:23094–106. https://doi.org/10.1074/jbc.M109.012617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee JJ, Drakaki A, Iliopoulos D, Struhl K. MiR-27b targets PPARgamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene. 2012;31:3818–25. https://doi.org/10.1038/onc.2011.543

    Article  CAS  PubMed  Google Scholar 

  22. Zhu J, Zou Z, Nie P, Kou X, Wu B, Wang S, et al. Downregulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1 expression. Cell Death Dis. 2016;7:e2454. https://doi.org/10.1038/cddis.2016.361

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oh YK, Lee HJ, Jeong MH, Rhee M, Mo JW, Song EH, et al. Role of activating transcription factor 3 on TAp73 stability and apoptosis in paclitaxel-treated cervical cancer cells. Mol Cancer Res. 2008;6:1232–49. https://doi.org/10.1158/1541-7786.mcr-07-0297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang YS, Jalgaonkar SP, Middleton JD, Hai T. Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proc Natl Acad Sci USA. 2017;114:E7159–e68. https://doi.org/10.1073/pnas.1700455114

    Article  CAS  PubMed  Google Scholar 

  25. Chueh AC, Tse JWT, Dickinson M, Ioannidis P, Jenkins L, Togel L, et al. ATF3 Repression of BCL-XL Determines Apoptotic Sensitivity to HDAC Inhibitors across Tumor Types. Clin Cancer Res. 2017;23:5573–84. https://doi.org/10.1158/1078-0432.ccr-17-0466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taniue K, Kurimoto A, Takeda Y, Nagashima T, Okada-Hatakeyama M, Katou Y, et al. ASBEL-TCF3 complex is required for the tumorigenicity of colorectal cancer cells. Proc Natl Acad Sci USA. 2016;113:12739–44. https://doi.org/10.1073/pnas.1605938113

    Article  CAS  PubMed  Google Scholar 

  27. Yang Y, Guo W, Ma J, Xu P, Zhang W, Guo S, et al. Downregulated TRPV1 expression contributes to melanoma growth via the calcineurin-ATF3-p53 pathway. J Invest Dermatol. 2018;138:2205–15. https://doi.org/10.1016/j.jid.2018.03.1510

    Article  CAS  PubMed  Google Scholar 

  28. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57. https://doi.org/10.1038/nrc3458

    Article  CAS  PubMed  Google Scholar 

  29. Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 2014;15:642–56. https://doi.org/10.15252/embr.201438638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maugeri-Sacca M, De Maria R. The Hippo pathway in normal development and cancer. Pharm Ther. 2018;186:60–72. https://doi.org/10.1016/j.pharmthera.2017.12.011

    Article  CAS  Google Scholar 

  31. Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017;18:758–70. https://doi.org/10.1038/nrm.2017.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chan SW, Lim CJ, Chen L, Chong YF, Huang C, Song H, et al. The Hippo pathway in biological control and cancer development. J Cell Physiol. 2011;226:928–39. https://doi.org/10.1002/jcp.22435

    Article  CAS  PubMed  Google Scholar 

  33. Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 2018;20:888–99. https://doi.org/10.1038/s41556-018-0142-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13:877–83. https://doi.org/10.1038/ncb2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giovinazzi S, Lindsay CR, Morozov VM, Escobar-Cabrera E, Summers MK, Han HS, et al. Regulation of mitosis and taxane response by Daxx and Rassf1. Oncogene. 2012;31:13–26. https://doi.org/10.1038/onc.2011.211

    Article  CAS  PubMed  Google Scholar 

  36. Kassler S, Donninger H, Birrer MJ, Clark GJ. RASSF1A and the taxol response in ovarian cancer. Mol Biol Int. 2012;2012:263267 https://doi.org/10.1155/2012/263267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lai D, Ho KC, Hao Y, Yang X. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res. 2011;71:2728–38. https://doi.org/10.1158/0008-5472.can-10-2711

    Article  CAS  PubMed  Google Scholar 

  38. Zeng Q, Liu J, Cao P, Li J, Liu X, Fan X, et al. Inhibition of REDD1 sensitizes bladder urothelial carcinoma to paclitaxel by inhibiting autophagy. Clin Cancer Res. 2018;24:445–59. https://doi.org/10.1158/1078-0432.ccr-17-0419

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki M, Cao K, Kato S, Komizu Y, Mizutani N, Tanaka K, et al. Targeting ceramide synthase 6-dependent metastasis-prone phenotype in lung cancer cells. J Clin Investig. 2016;126:254–65. https://doi.org/10.1172/jci79775

    Article  PubMed  Google Scholar 

  40. Zeng PY, Vakoc CR, Chen ZC, Blobel GA, Berger SL. In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. BioTechniques. 2006;41:694. https://doi.org/10.2144/000112297

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81874137), the Outstanding Youth Foundation of Hunan Province (2018JJ1047), the Huxiang Young Talent Project (2016RS3022), the Innovation-Driven Project of Central South University (2017CX012), the Fundamental Research Funds for the Central Universities of Central South University, Grant/Award Number: 2018zzts955, and the New Xiangya Talent Projects of the Third Xiangya Hospital of Central South University (20150201, JY201710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., He, D., Bo, H. et al. The MRVI1-AS1/ATF3 signaling loop sensitizes nasopharyngeal cancer cells to paclitaxel by regulating the Hippo–TAZ pathway. Oncogene 38, 6065–6081 (2019). https://doi.org/10.1038/s41388-019-0858-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0858-7

This article is cited by

Search

Quick links