Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinctive requirement of PKCε in the control of Rho GTPases in epithelial and mesenchymally transformed lung cancer cells

Abstract

Diacylglycerol (DAG)/phorbol ester-regulated protein kinase C (PKC) isozymes have been widely linked to tumor promotion and the development of a metastatic phenotype. PKCε, an oncogenic member of the PKC family, is abnormally overexpressed in lung cancer and other cancer types. This kinase plays significant roles in proliferation, survival, and migration; however, its role in epithelial-to-mesenchymal transition (EMT) has been scarcely studied. Silencing experiments in non-small lung cancer (NSCLC) cells revealed that PKCε or other DAG-regulated PKCs (PKCα and PKCδ) were dispensable for the acquisition of a mesenchymal phenotype induced by transforming growth factor beta (TGF-β). Unexpectedly, we found a nearly complete down-regulation of PKCε expression in TGF-β-mesenchymally transformed NSCLC cells. PMA and AJH-836 (a DAG-mimetic that preferentially activates PKCε) promote ruffle formation in NSCLC cells via Rac1, however they fail to induce these morphological changes in TGF-β-mesenchymally transformed cells despite their elevated Rac1 activity. Several Rac guanine nucleotide exchange-factors (Rac-GEFs) were also up-regulated in TGF-β-treated NSCLC cells, including Trio and Tiam2, which were required for cell motility. Lastly, we found that silencing or inhibiting PKCε enhances RhoA activity and stress fiber formation, a phenotype also observed in TGF-β-transformed cells. Our studies established a distinctive involvement of PKCε in epithelial and mesenchymal NSCLC cells, and identified a complex interplay between PKCε and small GTPases that contributes to regulation of NSCLC cell morphology and motile activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Griner EM, Kazanietz MG. Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer. 2007;7:281–94.

    Article  CAS  PubMed  Google Scholar 

  2. Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol. 2018;48:36–52.

    Article  CAS  PubMed  Google Scholar 

  3. Wu-Zhang AX, Newton AC. Protein kinase C pharmacology: refining the toolbox. Biochem J. 2013;452:195–209.

    Article  CAS  PubMed  Google Scholar 

  4. Garg R, Benedetti LG, Abera MB, Wang H, Abba M, Kazanietz MG. Protein kinase C and cancer: what we know and what we do not. Oncogene. 2014;33:5225–37.

    Article  CAS  PubMed  Google Scholar 

  5. Pan Q, Bao LW, Kleer CG, Sabel MS, Griffith KA, Teknos TN, et al. Protein kinase C epsilon is a predictive biomarker of aggressive breast cancer and a validated target for RNA interference anticancer therapy. Cancer Res. 2005;65:8366–71.

    Article  CAS  PubMed  Google Scholar 

  6. Garg R, Blando JM, Perez CJ, Abba MC, Benavides F, Kazanietz MG. Protein kinase C epsilon cooperates with PTEN loss for prostate tumorigenesis through the CXCL13-CXCR5 pathway. Cell Rep. 2017;19:375–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bae KM, Wang H, Jiang G, Chen MG, Lu L, Xiao L. Protein kinase C epsilon is overexpressed in primary human non-small cell lung cancers and functionally required for proliferation of non-small cell lung cancer cells in a p21/Cip1-dependent manner. Cancer Res. 2007;67:6053–63.

    Article  CAS  PubMed  Google Scholar 

  8. Gutierrez-Uzquiza A, Lopez-Haber C, Jernigan DL, Fatatis A, Kazanietz MG. PKCepsilon is an essential mediator of prostate cancer bone metastasis. Mol Cancer Res: Mcr. 2015;13:1336–46.

    Article  CAS  PubMed  Google Scholar 

  9. Gorin MA, Pan Q. Protein kinase C epsilon: an oncogene and emerging tumor biomarker. Mol Cancer. 2009;8:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Caino MC, Lopez-Haber C, Kissil JL, Kazanietz MG. Non-small cell lung carcinoma cell motility, rac activation and metastatic dissemination are mediated by protein kinase C epsilon. PLoS ONE. 2012;7:e31714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hafeez BB, Zhong W, Weichert J, Dreckschmidt NE, Jamal MS, Verma AK. Genetic ablation of PKC epsilon inhibits prostate cancer development and metastasis in transgenic mouse model of prostate adenocarcinoma. Cancer Res. 2011;71:2318–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Benavides F, Blando J, Perez CJ, Garg R, Conti CJ, DiGiovanni J, et al. Transgenic overexpression of PKCepsilon in the mouse prostate induces preneoplastic lesions. Cell Cycle. 2011;10:268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garg R, Blando JM, Perez CJ, Lal P, Feldman MD, Smyth EM, et al. COX-2 mediates pro-tumorigenic effects of PKCepsilon in prostate cancer. Oncogene. 2018;37:4735–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caino MC, Lopez-Haber C, Kim J, Mochly-Rosen D, Kazanietz MG. Proteins kinase Cvarepsilon is required for non-small cell lung carcinoma growth and regulates the expression of apoptotic genes. Oncogene. 2012;31:2593–600.

    Article  CAS  PubMed  Google Scholar 

  15. Aziz MH, Manoharan HT, Church DR, Dreckschmidt NE, Zhong W, Oberley TD, et al. Protein kinase Cepsilon interacts with signal transducers and activators of transcription 3 (Stat3), phosphorylates Stat3Ser727, and regulates its constitutive activation in prostate cancer. Cancer Res. 2007;67:8828–38.

    Article  CAS  PubMed  Google Scholar 

  16. Garg R, Blando J, Perez CJ, Wang H, Benavides FJ, Kazanietz MG. Activation of nuclear factor kappaB (NF-kappaB) in prostate cancer is mediated by protein kinase C epsilon (PKCepsilon). J Biol Chem. 2012;287:37570–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Basu A, Sivaprasad U. Protein kinase Cepsilon makes the life and death decision. Cell Signal. 2007;19:1633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hafeez BB, Fischer JW, Singh A, Zhong W, Mustafa A, Meske L, et al. Plumbagin inhibits prostate carcinogenesis in intact and castrated PTEN knockout mice via targeting PKCepsilon, Stat3, and epithelial-to-mesenchymal transition markers. Cancer Prev Res. 2015;8:375–86.

    Article  CAS  Google Scholar 

  19. Cooke M, Zhou X, Casado-Medrano V, Lopez-Haber C, Baker MJ, Garg R, et al. Characterization of AJH-836, a DAG-lactone with selectivity for novel PKC isozymes. J Biol Chem. 2018;293:8330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gandellini P, Folini M, Longoni N, Pennati M, Binda M, Colecchia M, et al. miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res. 2009;69:2287–95.

    Article  CAS  PubMed  Google Scholar 

  21. Jain K, Basu A. The multifunctional Protein Kinase C-epsilon in cancer development and progression. Cancers. 2014;6:860–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang LY, Diao ZL, Zheng JF, Wu YR, Zhang QD, Liu WH. Apelin attenuates TGF-beta1-induced epithelial to mesenchymal transition via activation of PKC-epsilon in human renal tubular epithelial cells. Peptides. 2017;96:44–52.

    Article  CAS  PubMed  Google Scholar 

  23. Jain K, Basu A. Protein kinase C-epsilon promotes EMT in breast cancer. Breast Cancer. 2014;8:61–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang Y, Massague J. Epithelial–mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7:re8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, et al. TGF-beta1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene. 2016;35:748–60.

    Article  CAS  PubMed  Google Scholar 

  27. Brown KA, Aakre ME, Gorska AE, Price JO, Eltom SE, Pietenpol JA, et al. Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res. 2004;6:R215–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, et al. TGF-beta tumor suppression through a lethal EMT. Cell. 2016;164:1015–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Symonds JM, Ohm AM, Carter CJ, Heasley LE, Boyle TA, Franklin WA, et al. Protein kinase C delta is a downstream effector of oncogenic K-ras in lung tumors. Cancer Res. 2011;71:2087–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hill KS, Erdogan E, Khoor A, Walsh MP, Leitges M, Murray NR, et al. Protein kinase Calpha suppresses Kras-mediated lung tumor formation through activation of a p38 MAPK-TGFbeta signaling axis. Oncogene. 2014;33:2134–44.

    Article  CAS  PubMed  Google Scholar 

  31. Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, et al. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem. 1993;268:9194–7.

    Article  CAS  PubMed  Google Scholar 

  32. Ong ST, Freeley M, Skubis-Zegadlo J, Fazil MH, Kelleher D, Fresser F, et al. Phosphorylation of Rab5a protein by protein kinase C is crucial for T-cell migration. J Biol Chem. 2014;289:19420–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leask A, Shi-Wen X, Khan K, Chen Y, Holmes A, Eastwood M, et al. Loss of protein kinase Cepsilon results in impaired cutaneous wound closure and myofibroblast function. J Cell Sci. 2008;121:3459–67.

    Article  CAS  PubMed  Google Scholar 

  34. Gorshkova I, He D, Berdyshev E, Usatuyk P, Burns M, Kalari S, et al. Protein kinase C-epsilon regulates sphingosine 1-phosphate-mediated migration of human lung endothelial cells through activation of phospholipase D2, protein kinase C-zeta, and Rac1. J Biol Chem. 2008;283:11794–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lopez-Haber C, Barrio-Real L, Casado-Medrano V, Kazanietz MG. Heregulin/ErbB3 signaling enhances CXCR4-driven Rac1 activation and breast cancer cell motility via hypoxia-inducible factor 1alpha. Mol Cell Biol. 2016;36:2011–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hall A. Rho GTPases and the control of cell behaviour. Biochem Soc Trans. 2005;33:891–5.

    Article  CAS  PubMed  Google Scholar 

  37. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70:389–99.

    Article  CAS  PubMed  Google Scholar 

  38. Guilluy C, Dubash AD, Garcia-Mata R. Analysis of RhoA and Rho GEF activity in whole cells and the cell nucleus. Nat Protoc. 2011;6:2050–60.

    Article  CAS  PubMed  Google Scholar 

  39. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6:167–80.

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Mata R, Burridge K. Catching a GEF by its tail. Trends Cell Biol. 2007;17:36–43.

    Article  CAS  PubMed  Google Scholar 

  41. Bustelo XR. RHO GTPases in cancer: known facts, open questions, and therapeutic challenges. Biochem Soc Trans. 2018;46:741–60.

    Article  CAS  PubMed  Google Scholar 

  42. Sosa MS, Lopez-Haber C, Yang C, Wang H, Lemmon MA, Busillo JM, et al. Identification of the Rac-GEF P-Rex1 as an essential mediator of ErbB signaling in breast cancer. Mol Cell. 2010;40:877–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cook DR, Solski PA, Bultman SJ, Kauselmann G, Schoor M, Kuehn R, et al. The ect2 rho Guanine nucleotide exchange factor is essential for early mouse development and normal cell cytokinesis and migration. Genes Cancer. 2011;2:932–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mochly-Rosen D, Das K, Grimes KV. Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov. 2012;11:937–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Newton AC, Brognard J. Reversing the paradigm: protein kinase C as a tumor suppressor. Trends Pharmacol Sci. 2017;38:438–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pan Q, Bao LW, Teknos TN, Merajver SD. Targeted disruption of protein kinase C epsilon reduces cell invasion and motility through inactivation of RhoA and RhoC GTPases in head and neck squamous cell carcinoma. Cancer Res. 2006;66:9379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gobbi G, Masselli E, Micheloni C, Nouvenne A, Russo D, Santi P, et al. Hypoxia-induced down-modulation of PKCepsilon promotes trail-mediated apoptosis of tumor cells. Int J Oncol. 2010;37:719–29.

    CAS  PubMed  Google Scholar 

  48. Meshki J, Caino MC, von Burstin VA, Griner E, Kazanietz MG. Regulation of prostate cancer cell survival by protein kinase Cepsilon involves bad phosphorylation and modulation of the TNFalpha/JNK pathway. J Biol Chem. 2010;285:26033–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pardo OE, Wellbrock C, Khanzada UK, Aubert M, Arozarena I, Davidson S, et al. FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCepsilon, B-Raf and S6K2. EMBO J. 2006;25:3078–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shankar E, Sivaprasad U, Basu A. Protein kinase C epsilon confers resistance of MCF-7 cells to TRAIL by Akt-dependent activation of Hdm2 and downregulation of p53. Oncogene. 2008;27:3957–66.

    Article  CAS  PubMed  Google Scholar 

  51. Bassini A, Zauli G, Migliaccio G, Migliaccio AR, Pascuccio M, Pierpaoli S, et al. Lineage-restricted expression of protein kinase C isoforms in hematopoiesis. Blood. 1999;93:1178–88.

    Article  CAS  PubMed  Google Scholar 

  52. Gaboardi GC, Ramazzotti G, Bavelloni A, Piazzi M, Fiume R, Billi AM, et al. A role for PKCepsilon during C2C12 myogenic differentiation. Cell Signal. 2010;22:629–35.

    Article  CAS  PubMed  Google Scholar 

  53. Gobbi G, Mirandola P, Carubbi C, Masselli E, Sykes SM, Ferraro F, et al. Proplatelet generation in the mouse requires PKCepsilon-dependent RhoA inhibition. Blood. 2013;122:1305–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Di Marcantonio D, Galli D, Carubbi C, Gobbi G, Queirolo V, Martini S, et al. PKCepsilon as a novel promoter of skeletal muscle differentiation and regeneration. Exp Cell Res. 2015;339:10–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gobbi G, Mirandola P, Sponzilli I, Micheloni C, Malinverno C, Cocco L, et al. Timing and expression level of protein kinase C epsilon regulate the megakaryocytic differentiation of human CD34 cells. Stem Cells. 2007;25:2322–9.

    Article  CAS  PubMed  Google Scholar 

  56. Gobbi G, Di Marcantonio D, Micheloni C, Carubbi C, Galli D, Vaccarezza M, et al. TRAIL up-regulation must be accompanied by a reciprocal PKCepsilon down-regulation during differentiation of colonic epithelial cell: implications for colorectal cancer cell differentiation. J Cell Physiol. 2012;227:630–8.

    Article  CAS  PubMed  Google Scholar 

  57. Galli D, Carubbi C, Masselli E, Corradi D, Dei Cas A, Nouvenne A, et al. PKCepsilon is a negative regulator of PVAT-derived vessel formation. Exp Cell Res. 2015;330:277–86.

    Article  CAS  PubMed  Google Scholar 

  58. Leontieva OV, Black JD. Identification of two distinct pathways of protein kinase Calpha down-regulation in intestinal epithelial cells. J Biol Chem. 2004;279:5788–801.

    Article  CAS  PubMed  Google Scholar 

  59. Wang H, Gutierrez-Uzquiza A, Garg R, Barrio-Real L, Abera MB, Lopez-Haber C, et al. Transcriptional regulation of oncogenic protein kinase C (PKC) by STAT1 and Sp1 proteins. J Biol Chem. 2014;289:19823–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang H, Meyer KD, Zhang L. Fetal exposure to cocaine causes programming of Prkce gene repression in the left ventricle of adult rat offspring. Biol Reprod. 2009;80:440–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang X, Li D, Li M, Ye M, Ding L, Cai H, et al. MicroRNA-146a targets PRKCE to modulate papillary thyroid tumor development. Int J Cancer. 2014;134:257–67.

    Article  PubMed  CAS  Google Scholar 

  62. Wang Y, Men M, Yang W, Zheng H, Xue S. MiR-31 downregulation protects against cardiac ischemia/reperfusion injury by targeting Protein Kinase C Epsilon (PKCepsilon) directly. Cell Physiol Biochem. 2015;36:179–90.

    Article  PubMed  CAS  Google Scholar 

  63. Zhao W, Wang P, Ma J, Liu YH, Li Z, Li ZQ, et al. MiR-34a regulates blood-tumor barrier function by targeting protein kinase Cepsilon. Mol Biol Cell. 2015;26:1786–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garofalo M, Croce CM. microRNAs: master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol. 2011;51:25–43.

    Article  CAS  PubMed  Google Scholar 

  65. Gao S, Alarcon C, Sapkota G, Rahman S, Chen PY, Goerner N, et al. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell. 2009;36:457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Iyengar PV. Regulation of ubiquitin enzymes in the TGF-beta pathway. Int J Mol Sci. 2017;18:4.

    Article  CAS  Google Scholar 

  67. Sun X, Xie Z, Ma Y, Pan X, Wang J, Chen Z, et al. TGF-beta inhibits osteogenesis by upregulating the expression of ubiquitin ligase SMURF1 via MAPK-ERK signaling. J Cell Physiol. 2018;233:596–606.

    Article  CAS  PubMed  Google Scholar 

  68. Slupsky JR, Kamiguti AS, Harris RJ, Cawley JC, Zuzel M. Central role of protein kinase Cepsilon in constitutive activation of ERK1/2 and Rac1 in the malignant cells of hairy cell leukemia. Am J Pathol. 2007;170:745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fleming IN, Elliott CM, Collard JG, Exton JH. Lysophosphatidic acid induces threonine phosphorylation of Tiam1 in Swiss 3T3 fibroblasts via activation of protein kinase C. J Biol Chem. 1997;272:33105–10.

    Article  CAS  PubMed  Google Scholar 

  70. Montero JC, Seoane S, Garcia-Alonso S, Pandiella A. Multisite phosphorylation of P-Rex1 by protein kinase C. Oncotarget. 2016;7:77937–49.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Levay M, Settleman J, Ligeti E. Regulation of the substrate preference of p190RhoGAP by protein kinase C-mediated phosphorylation of a phospholipid binding site. Biochemistry. 2009;48:8615–23.

    Article  CAS  PubMed  Google Scholar 

  72. Griner EM, Caino MC, Sosa MS, Colon-Gonzalez F, Chalmers MJ, Mischak H, et al. A novel cross-talk in diacylglycerol signaling: the Rac-GAP beta2-chimaerin is negatively regulated by protein kinase Cdelta-mediated phosphorylation. J Biol Chem. 2010;285:16931–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zeidman R, Troller U, Raghunath A, Pahlman S, Larsson C. Protein kinase Cepsilon actin-binding site is important for neurite outgrowth during neuronal differentiation. Mol Biol Cell. 2002;13:12–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Prekeris R, Mayhew MW, Cooper JB, Terrian DM. Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in the regulation of synaptic function. J Cell Biol. 1996;132:77–90.

    Article  CAS  PubMed  Google Scholar 

  75. Yu JR, Tai Y, Jin Y, Hammell MC, Wilkinson JE, Roe JS, et al. TGF-beta/Smad signaling through DOCK4 facilitates lung adenocarcinoma metastasis. Genes Dev. 2015;29:250–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ungefroren H, Witte D, Lehnert H. The role of small GTPases of the Rho/Rac family in TGF-beta-induced EMT and cell motility in cancer. Dev Dyn. 2018;247:451–61.

    Article  CAS  PubMed  Google Scholar 

  77. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001;12:27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ungefroren H, Gieseler F, Kaufmann R, Settmacher U, Lehnert H, Rauch BH. Signaling crosstalk of TGF-beta/ALK5 and PAR2/PAR1: a complex regulatory network controlling fibrosis and cancer. Int J Mol Sci. 2018;19:6.

    Article  CAS  Google Scholar 

  79. Chang MT, Asthana S, Gao SP, Lee BH, Chapman JS, Kandoth C, et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol. 2016;34:155–63.

    Article  CAS  PubMed  Google Scholar 

  80. Burgos M, Pastor MD, Gonzalez JC, Martinez-Galan JR, Vaquero CF, Fradejas N, et al. PKCepsilon upregulates voltage-dependent calcium channels in cultured astrocytes. Glia. 2007;55:1437–48.

    Article  CAS  PubMed  Google Scholar 

  81. Barrio-Real L, Lopez-Haber C, Casado-Medrano V, Goglia AG, Toettcher JE, Caloca MJ, et al. P-Rex1 is dispensable for Erk activation and mitogenesis in breast cancer. Oncotarget. 2018;9:28612–24.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant R01-ES026023 and R01-ES026023-S1 from the National Institutes of Health to M.G.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo G. Kazanietz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casado-Medrano, V., Barrio-Real, L., Wang, A. et al. Distinctive requirement of PKCε in the control of Rho GTPases in epithelial and mesenchymally transformed lung cancer cells. Oncogene 38, 5396–5412 (2019). https://doi.org/10.1038/s41388-019-0796-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0796-4

This article is cited by

Search

Quick links