STAT3 inhibition reduces macrophage number and tumor growth in neurofibroma


Plexiform neurofibroma, a benign peripheral nerve tumor, is associated with the biallelic loss of function of the NF1 tumor suppressor in Schwann cells. Here, we show that FLLL32, a small molecule inhibitor of JAK2/STAT3 signaling, reduces neurofibroma growth in mice with conditional, biallelic deletion of Nf1 in the Schwann cell lineage. FLLL32 treatment or Stat3 deletion in tumor cells reduced inflammatory cytokine expression and tumor macrophage numbers in neurofibroma. Although STAT3 inhibition downregulated the chemokines CCL2 and CCL12, which can signal through CCR2 to recruit macrophages to peripheral nerves, deletion of Ccr2 did not improve survival or reduce macrophage numbers in neurofibroma-bearing mice. Interestingly, Iba1+; F4/80+;CD11b+ macrophages accounted for ~20–40% of proliferating cells in untreated tumors. FLLL32 suppressed macrophage proliferation, implicating STAT3-dependent, local proliferation in neurofibroma macrophage accumulation, and decreased Schwann cell proliferation and increased Schwann cell death. The functions of STAT3 signaling in neurofibroma Schwann cells and macrophages, and its relevance as a therapeutic target in neurofibroma, merit further investigation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Prada CE, Rangwala FA, Martin LJ, Lovell AM, Saal HM, Schorry EK, et al. Pediatric plexiform neurofibromas: impact on morbidity and mortality in neurofibromatosis type 1. J Pediatr. 2012;160:461–7.

  2. 2.

    Ferner RE, Huson SM, Thomas N, Moss C, Willshaw H, Evans DG, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44:81–8.

  3. 3.

    Ferner RE, Gutmann DH. Neurofibromatosis type 1 (NF1): diagnosis and management. Handb Clin Neurol. 2013;115:939–55.

  4. 4.

    Sherman LS, Atit R, Rosenbaum T, Cox AD, Ratner N. Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J Biol Chem. 2000;275:30740–5.

  5. 5.

    Kim HA, Rosenbaum T, Marchionni MA, Ratner N, DeClue JE. Schwann cells from neurofibromin deficient mice exhibit activation of p21ras, inhibition of cell proliferation and morphological changes. Oncogene. 1995;11:325–35.

  6. 6.

    Hiatt KK, Ingram DA, Zhang Y, Bollag G, Clapp DW. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1-/- cells. J Biol Chem. 2001;276:7240–5.

  7. 7.

    Beert E, Brems H, Renard M, Ferreiro JF, Melotte C, Thoelen R, et al. Biallelic inactivation of NF1 in a sporadic plexiform neurofibroma. Genes Chromosomes Cancer. 2012;51:852–7.

  8. 8.

    Pemov A, Li H, Patidar R, Hansen NF, Sindiri S, Hartley SW, et al. The primacy of NF1 loss as the driver of tumorigenesis in neurofibromatosis type 1-associated plexiform neurofibromas. Oncogene. 2017;36:3168–77.

  9. 9.

    Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science. 2002;296:920–2.

  10. 10.

    Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D, et al. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert Hedgehog-expressing cells. Cancer Cell. 2008;13:105–16.

  11. 11.

    Wu J, Keng VW, Patmore DM, Kendall JJ, Patel AV, Jousma E, et al. Insertional mutagenesis identifies a STAT3/Arid1b/β-catenin pathway driving neurofibroma initiation. Cell Rep. 2016;14:1979–90.

  12. 12.

    Wu J, Liu W, Williams JP, Ratner N. EGFR-Stat3 signalling in nerve glial cells modifies neurofibroma initiation. Oncogene. 2017;36:1669–77.

  13. 13.

    Bournazou E, Bromberg J. Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT. 2013;2:e23828.

  14. 14.

    Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809.

  15. 15.

    Lederle W, Depner S, Schnur S, Obermueller E, Catone N, Just A, et al. IL-6 promotes malignant growth of skin SCCs by regulating a network of autocrine and paracrine cytokines. Int J Cancer. 2011;128:2803–14.

  16. 16.

    Prada CE, Jousma E, Rizvi TA, Wu J, Dunn RS, Mayes DA, et al. Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition. Acta Neuropathol. 2013;125:159–68.

  17. 17.

    Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 2008;118:3367–77.

  18. 18.

    Herrmann A, Kortylewski M, Kujawski M, Zhang C, Reckamp K, Armstrong B, et al. Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res. 2010;70:7455–64.

  19. 19.

    Campana L, Starkey Lewis PJ, Pellicoro A, Aucott RL, Man J, O’Duibhir E, et al. The STAT3–IL-10–IL-6 pathway is a novel regulator of macrophage efferocytosis and phenotypic conversion in sterile liver injury. J Immunol. 2018;200:1169–87.

  20. 20.

    Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61.

  21. 21.

    Zhang J, Lu Y, Pienta KJ. Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst. 2010;102:522–8.

  22. 22.

    Gazzaniga S, Bravo AI, Guglielmotti A, Van Rooijen N, Maschi F, Vecchi A, et al. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol. 2007;127:2031–41.

  23. 23.

    Roca H, Varcos ZS, Sud S, Craig MJ, Pienta KJ. CCL2 and interleukin-6 promote survival of human CD11b+peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem. 2009;284:34342–54.

  24. 24.

    Furtek SL, Backos DS, Matheson CJ, Reigan P. Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol. 2016;11:308–18.

  25. 25.

    Lin L, Deangelis S, Foust E, Fuchs J, Li C, Li PK, et al. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer. 2010;9:217.

  26. 26.

    Staser K, Yang FC, Clapp DW. Mast cells and the neurofibroma microenvironment. Blood. 2010;116:157–64.

  27. 27.

    Li X, Yao W, Yuan Y, Chen P, Li B, Li J, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 2017;66:157–67.

  28. 28.

    Miller SJ, Jessen WJ, Mehta J, Hardiman A, Sites E, Kaiser S, et al. Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO Mol Med. 2009;1:236–48.

  29. 29.

    Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006;7:311–7.

  30. 30.

    Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. 2007;117:902–9.

  31. 31.

    Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA. 2012;109:2491–6.

  32. 32.

    Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–5.

  33. 33.

    Siebert H, Sachse A, Kuziel WA, Maeda N, Brück W. The chemokine receptor CCR2 is involved in macrophage recruitment to the injured peripheral nervous system. J Neuroimmunol. 2000;110:177–85.

  34. 34.

    Oberländer M, Berghoff M. Effects of the CC chemokine receptor 2 in mice deficient for the myelin protein zero (P0). Mol Cell Neurosci. 2010;45:59–65.

  35. 35.

    Müller M, Wacker K, Getts D, Ringelstein EB, Kiefer R. Further evidence for a crucial role of resident endoneurial macrophages in peripheral nerve disorders: lessons from acrylamide-induced neuropathy. Glia. 2008;56:1005–16.

  36. 36.

    Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest. 2007;117:185–94.

  37. 37.

    Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, et al. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE 2010;5.e13693.

  38. 38.

    Choi K, Komurov K, Fletcher JS, Jousma E, Cancelas JA, Wu J, et al. An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system. Sci Rep. 2017;7:43315.

  39. 39.

    Gauri P, LC H, ID R, Khalida W, TK E, Heather L, et al. The role of phosphorylated signal transducer and activator of transcription 3 (pSTAT3) in peripheral nerve sheath tumours. Histopathology. 2016;70:946–53.

Download references


We thank James Fuchs and Jiayuh Lin (The Ohio State University) for providing FLLL32, and the Imaging Resource Center at Cincinnati Children’s Hospital Medical Center (R. Scott Dunn) for MRI Imaging. This work was supported by R01 NS28840 (to NR and JW), and DOD W81XWH-11-1-0057 (to NR), DOD W81XWH-11-1-0259 (to JW), and RNA-Seq by an Agreement with the Neurofibromatosis Therapeutic Acceleration Program (NTAP) at Johns Hopkins University (to NR). JSF was the recipient of 5 F30 NS096796.

Author information

Correspondence to Jianqiang Wu or Nancy Ratner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Study approval

The animal care and use committee of the Cincinnati Children’s Hospital Medical Center approved all animal care and procedures. Human tissues were collected under Cincinnati Children’s Hospital Medical Center (CCHMC) IRB approval.

Electronic supplementary material

Supplemental Figure 1

Supplementary Figure 2

Supplementary Figure 3

Supplemental Figure 4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading