Abstract

Tumor responses to cancer therapeutics are generally monitored every 2–3 months based on changes in tumor size. Dynamic biomarkers that reflect effective engagement of targeted therapeutics to the targeted pathway, so-called “effect sensors”, would fulfill a need for non-invasive, drug-specific indicators of early treatment effect. Using a proteomics approach to identify effect sensors, we demonstrated MUC1 upregulation in response to epidermal growth factor receptor (EGFR)-targeting treatments in breast and lung cancer models. To achieve this, using semi-quantitative mass spectrometry, we found MUC1 to be significantly and durably upregulated in response to erlotinib, an EGFR-targeting treatment. MUC1 upregulation was regulated transcriptionally, involving PI3K-signaling and STAT3. We validated these results in erlotinib-sensitive human breast and non-small lung cancer cell lines. Importantly, erlotinib treatment of mice bearing SUM149 xenografts resulted in increased MUC1 shedding into plasma. Analysis of MUC1 using serial blood sampling may therefore be a new, relatively non-invasive tool to monitor early and drug-specific effects of EGFR-targeting therapeutics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

  2. 2.

    Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2017;14:57–66.

  3. 3.

    de Vries EGE, THO Munnink, van Vugt MATM, Nagengast WB. Toward molecular imaging-driven drug development in oncology. Cancer Discov. 2011;1:25–8.

  4. 4.

    Pool M, de Boer HR, Lub-de Hooge MN, van Vugt MATM, de Vries EGE. Harnessing integrative omics to facilitate molecular imaging of precision medicine of the human epidermal growth factor receptor family. Theranostics. 2017;7:2111–33.

  5. 5.

    Vargas AJ, Harris CC. Biomarker development in the precision medicine era: lung cancer as a case study. Nat Rev Cancer. 2016;16:525–37.

  6. 6.

    Petrylak DP, Ankerst DP, Jiang CS, Tangen CM, Hussain MHA, Lara PN, et al. Evaluation of prostate-specific antigen declines for surrogacy in patients treated on SWOG 99-16. J Natl Cancer Inst. 2006;98:516–21.

  7. 7.

    Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DWY, Kaper F, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4:136ra68

  8. 8.

    de Vries EGE, de Jong S, Gietema JA. Molecular imaging as a tool for drug development and trial design. J Clin Oncol. 2015;33:2585–7.

  9. 9.

    Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25:282–303.

  10. 10.

    Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.

  11. 11.

    Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A. et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–45.

  12. 12.

    Kani K, Faca VM, Hughes LD, Zhang W, Fang Q, Shahbaba B, et al. Quantitative proteomic profiling identifies protein correlates to EGFR kinase inhibition. Mol Cancer Ther. 2012;11:1071–81.

  13. 13.

    Hoadley KA, Weigman VJ, Fan C, Sawyer LR, He X, Troester MA, et al. EGFR associated expression profiles vary with breast tumor subtype. BMC Genomics. 2007;8:258

  14. 14.

    Yamasaki F, Zhang D, Bartholomeusz C, Sudo T, Hortobagyi GN, Kurisu K, et al. Sensitivity of breast cancer cells to erlotinib depends on cyclin-dependent kinase 2 activity. Mol Cancer Ther. 2007;6:2168–77.

  15. 15.

    Busse D, Doughty RS, Ramsey TT, Russell WE, Price JO, Flanagan WM, et al. Reversible G(1) arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation ofp27(KIP1) independent of MAPK activity. J Biol Chem. 2000;275:6987–95.

  16. 16.

    Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1:376–86.

  17. 17.

    Wang S-C, Nakajima Y, Yu Y-L, Xia W, Chen C-T, Yang C-C, et al. Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol. 2006;8:1359–68.

  18. 18.

    Lee S-I, Batzoglou S. Application of independent component analysis to microarrays. Genome Biol. 2003;4:R76.

  19. 19.

    Kufe DW. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer. 2009;9:874–85.

  20. 20.

    Duffy MJ, Walsh S, McDermott EW, Crown J. Biomarkers in breast cancer: where are we and where are we going? Adv Clin Chem. 2015;71:1–23.

  21. 21.

    Turke AB, Zejnullahu K, Wu Y-L, Song Y, Dias-Santagata D, Lifshits E et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010;17:77–88.

  22. 22.

    Pool M, Terwisscha van Scheltinga AGT, Kol A, Giesen D, de Vries EGE, Lub-de Hooge MN et al. 89Zr-Onartuzumab PET imaging of c-MET receptor dynamics. Eur J Nucl Med Mol Imaging. 2017;44:1328–36.

  23. 23.

    Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–43.

  24. 24.

    Sequist LV, Yang JC, Yamamoto N, O’Byrne K, Hirsh V, Mok T. et al. LUX-LUNG 3 Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31:1–11.

  25. 25.

    White DE, Negorev D, Peng H, Ivanov AV, Maul GG, Rauscher FJ. et al. KAP1, a novel substrate for PIKK family members, colocalizes with numerous damage response factors at DNA lesions. Cancer Res. 2006;66:11594–9.

  26. 26.

    Ren J, Agata N, Chen D, Li Y, Yu W, Huang L. et al. Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell. 2004;5:163–75.

  27. 27.

    Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154:442–51.

  28. 28.

    Kearns NA, Genga RMJ, Enuameh MS, Garber M, Wolfe SA, Maehr R et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development. 2013;141:219–23.

  29. 29.

    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159:647–61.

  30. 30.

    Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature. 2007;445:437–41.

  31. 31.

    Chakrabarty A, Sanchez V, Kuba MG, Rinehart C, Arteaga CL. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc Natl Acad Sci USA. 2012;109:2718–23.

  32. 32.

    Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 2011;19:58–71.

  33. 33.

    Garrett JT, Olivares MJ, Rinehart C, Granja-Ingram ND, Sanchez V, Chakrabarty A, et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci USA. 2011;108:5021–6.

  34. 34.

    Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

  35. 35.

    Gaemers IC, Vos HL, Volders HH, Van der Valk SW, Hilkens J. A STAT-responsive element in the promoter of the episialin/MUC1 gene is involved in its overexpression in carcinoma cells. J Biol Chem. 2001;276:6191–9.

  36. 36.

    Ahmad R, Rajabi H, Kosugi M, Joshi MD, Alam M, Vasir B. et al. MUC1-C oncoprotein promotes STAT3 activation in an autoinductive regulatory loop. Sci Signal. 2011;4:ra9

  37. 37.

    Kovarik A, Lu PJ, Peat N, Morris J, Taylor-Papadimitriou J. Two GC boxes (Sp1 sites) are involved in regulation of the activity of the epithelium-specific MUC1 promoter. J Biol Chem. 1996;271:18140–7.

  38. 38.

    Starsíchová A, Lincová E, Pernicová Z, Kozubík A, Soucek K. TGF-beta1 suppresses IL-6-induced STAT3 activation through regulation of Jak2 expression in prostate epithelial cells. Cell Signal. 2010;22:1734–44.

  39. 39.

    Ueno NT, Zhang D. Targeting EGFR in triple negative breast cancer. J Cancer. 2011;2:324–8.

  40. 40.

    Lee HJ, Zhuang G, Cao Y, Du P, Kim HJ, Settleman J, et al. Drug resistance via feedback activation of stat3 in oncogene-addicted cancer cells. Cancer Cell. 2014;26:207–21.

  41. 41.

    Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537:347–55.

  42. 42.

    Savage P, Blanchet-Cohen A, Revil T, Badescu D, Saleh SMI, Wang YC, et al. A targetable EGFR-dependent tumor-initiating program in breast cancer. Cell Rep. 2017;21:1140–9.

  43. 43.

    Pool M, Kol A, Lub-de Hooge MN, Gerdes CA, de Jong S, de Vries EGE, et al. Extracellular domain shedding influences specific tumor uptake and organ distribution of the EGFR PET tracer 89Zr-imgatuzumab. Oncotarget. 2016;7:68111–21.

  44. 44.

    Ishikawa N, Hattori N, Yokoyama A, Tanaka S, Nishino R, Yoshioka K, et al. Usefulness of monitoring the circulating Krebs von den Lungen-6 levels to predict the clinical outcome of patients with advanced nonsmall cell lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors. Int J Cancer. 2008;122:2612–20.

  45. 45.

    Fujiwara Y, Kiura K, Toyooka S, Hotta K, Tabata M, Takigawa N, et al. Elevated serum level of sialylated glycoprotein KL-6 predicts a poor prognosis in patients with non-small cell lung cancer treated with gefitinib. Lung Cancer. 2008;59:81–7.

  46. 46.

    Bearz A, Talamini R, Vaccher E, Spina M, Simonelli C, Steffan A, et al. MUC-1 (CA 15-3 antigen) as a highly reliable predictor of response to EGFR inhibitors in patients with bronchioloalveolar carcinoma: an experience on 26 patients. Int J Biol Markers. 2008;22:307–11.

  47. 47.

    D’Alessandro R, Roselli M, Ferroni P, Mariotti S, Spila A, Aloe S, et al. Serum tissue polypeptide specific antigen (TPS): a complementary tumor marker to CA 15-3 in the management of breast cancer. Breast Cancer Res Treat. 2001;68:9–19.

  48. 48.

    Heijink AM, Blomen VA, Bisteau X, Degener F, Matsushita FY, Kaldis P. et al. A haploid genetic screen identifies the G 1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity. Proc Natl Acad Sci USA. 2015;112:15160–5.

  49. 49.

    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.

  50. 50.

    Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M, et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.

  51. 51.

    Vizcaíno JA, Côté RG, Csordas A, Dianes JA, Fabregat A, Foster JM. et al. The proteomics identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013;41:D1063–9.

Download references

Acknowledgements

We thank members of the Medical Oncology Department and Cancer Research Center Groningen for helpful discussions. This work is financially supported by the European Research Council (ERC-Advanced Grant ERC-2011-293-445 to E.G.E.d.V.). E.G.E.d.V. and M.A.T.M.v.V. conceived the study. H.R.d.B., E.J., S.v.C., and M.E. designed and performed in vitro experiments. E.J. and F.F. performed MS experiments and analysis. R.S.N.F. and H.R.d.B. performed pathway analysis. M.P., D.F.S., and W.H. designed and manufactured molecular imaging tools. H.R.d.B. and M.P. performed in vivo experiments. H.R.d.B., E.G.E.d.V., and M.A.T.M.v.V. wrote the manuscript and all authors contributed to editing of the manuscript. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 51 with the dataset identifier PXD005985.

Author information

Affiliations

  1. Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, Netherlands

    • H. Rudolf de Boer
    • , Martin Pool
    • , Esméé Joosten
    • , Marieke Everts
    • , Suzanne van Cooten
    • , Rudolf S. N. Fehrmann
    • , Elisabeth G. E. de Vries
    •  & Marcel A. T. M. van Vugt
  2. Department of Surgical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, Netherlands

    • Douwe F. Samplonius
    •  & Wijnand Helfrich
  3. Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, Netherlands

    • Harry J. M. Groen
  4. Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre & Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands

    • Fabrizia Fusetti

Authors

  1. Search for H. Rudolf de Boer in:

  2. Search for Martin Pool in:

  3. Search for Esméé Joosten in:

  4. Search for Marieke Everts in:

  5. Search for Douwe F. Samplonius in:

  6. Search for Wijnand Helfrich in:

  7. Search for Harry J. M. Groen in:

  8. Search for Suzanne van Cooten in:

  9. Search for Fabrizia Fusetti in:

  10. Search for Rudolf S. N. Fehrmann in:

  11. Search for Elisabeth G. E. de Vries in:

  12. Search for Marcel A. T. M. van Vugt in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Marcel A. T. M. van Vugt.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41388-018-0522-7