Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E2F1 and E2F7 differentially regulate KPNA2 to promote the development of gallbladder cancer

Abstract

Karyopherin alpha 2 (KPNA2) is a nuclear import factor that is elevated in multiple cancers. However, its molecular regulation at the transcriptional levels is poorly understood. Here we found that KPNA2 was significantly upregulated in gallbladder cancer (GBC), and the increased levels were correlated with short survival of patients. Gene knocking down of KPNA2 inhibited tumor cell proliferation and migration in vitro as well as xenografted tumor development in vivo. A typical transcription factor E2F1 associated with its DNA-binding partner DP1 bond to the promoter region of KPNA2 and induced KPNA2 expression. In contrast, an atypical transcription factor E2F7 competed against DP1 and blocked E2F1-induced KPNA2 gene activation. Mutation of the dimerization residues of E2F7 or DNA-binding domain of E2F1 abolished the suppressive effects of E2F7 on KPNA2 gene expression. In addition, KPNA2 mediated nuclear localization of E2F1 and E2F7, where they in turn controlled KPNA2 expression. Taken together, our data provided mechanistic insights into divergently transcriptional regulation of KPNA2, thus pointing to KPNA2 as a potential target for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kanthan R, Senger JL, Ahmed S, Kanthan SC. Gallbladder cancer in the 21st century. J Oncol. 2015;2015:967472.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zeng H, Chen W, Zheng R, Zhang S, Ji JS, Zou X, et al. Changing cancer survival in China during 2003–15: a pooled analysis of 17 population-based cancer registries. Lancet Glob Health. 2018;6:e555–67.

    Article  PubMed  Google Scholar 

  3. Li M, Zhang Z, Li X, Ye J, Wu X, Tan Z, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet. 2014;46:872–6.

    Article  CAS  PubMed  Google Scholar 

  4. Li M, Liu F, Zhang Y, Wu X, Wu W, Wang XA, et al. Whole-genome sequencing reveals the mutational landscape of metastatic small-cell gallbladder neuroendocrine carcinoma (GB-SCNEC). Cancer Lett. 2017;391:20–27.

    Article  CAS  PubMed  Google Scholar 

  5. Wu XS, Wang F, Li HF, Hu YP, Jiang L, Zhang F, et al. LncRNA-PAGBC acts as a microRNA sponge and promotes gallbladder tumorigenesis. EMBO Rep. 2017;18:1837–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ye YY, Mei JW, Xiang SS, Li HF, Ma Q, Song XL, et al. MicroRNA-30a-5p inhibits gallbladder cancer cell proliferation, migration and metastasis by targeting E2F7. Cell Death Dis. 2018;9:410.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liang HB, Cao Y, Ma Q, Shu YJ, Wang Z, Zhang F, et al. MYBL2 is a potential prognostic marker that promotes cell proliferation in gallbladder cancer. Cell Physiol Biochem. 2017;41:2117–31.

    Article  CAS  PubMed  Google Scholar 

  8. Shu Y-J, Bao R-F, Jiang L, Wang Z, Wang X-A, Zhang F, et al. MicroRNA-29c-5p suppresses gallbladder carcinoma progression by directly targeting CPEB4 and inhibiting the MAPK pathway. Cell Death Differ. 2017;24:445–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Görlich D. Transport into and out of the cell nucleus. EMBO J. 1998;17:2721–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dahl E, Kristiansen G, Gottlob K, Klaman I, Ebner E, Hinzmann B, et al. Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin alpha2 as a potential novel prognostic marker in breast cancer. Clin Cancer Res. 2006;12:3950–60.

    Article  CAS  PubMed  Google Scholar 

  11. Winnepenninckx V, Lazar V, Michiels S, Dessen P, Stas M, Alonso SR, et al. Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst. 2006;98:472–82.

    Article  CAS  PubMed  Google Scholar 

  12. Sakai M, Sohda M, miyazaki T, Suzuki S, Sano A, Tanaka N, et al. Significance of karyopherin-α 2 (KPNA2) expression in esophageal squamous cell carcinoma. Anticancer Res. 2010;30:6.

    Google Scholar 

  13. Hu Z-y, Yuan S-x, Yang Y, Zhou W-p, Jiang H. Pleomorphic adenoma gene 1 mediates the role of karyopherin alpha 2 and has prognostic significance in hepatocellular carcinoma. J Exp Clin Cancer Res. 2014;33:61.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang C-I, Chien K-Y, Wang C-L, Liu H-P, Cheng C-C, Chang Y-S, et al. Quantitative proteomics reveals regulation of karyopherin subunit alpha-2 (KPNA2) and its potential novel cargo proteins in nonsmall cell lung cancer. Mol Cell Proteom. 2012;11:1105–22.

    Article  Google Scholar 

  15. DeGregori J, Johnson DG. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med. 2006;6:739–48.

    CAS  PubMed  Google Scholar 

  16. Endo-Munoz L, Dahler A, Teakle N, Rickwood D, Hazar-Rethinam M, Abdul-Jabbar I, et al. E2F7 can regulate proliferation, differentiation, and apoptotic responses in human keratinocytes: implications for cutaneous squamous cell carcinoma formation. Cancer Res. 2009;69:1800–8.

    Article  CAS  PubMed  Google Scholar 

  17. Chen C, Wells AD. Comparative analysis of E2F Family member oncogenic activity. PLoS ONE. 2007;2:e912.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Crosby ME, Almasan A. Opposing roles of E2Fs in cell proliferation and death. Cancer Biol Ther. 2004;3:1208–11.

    Article  CAS  PubMed  Google Scholar 

  19. Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol. 2002;3:11–20.

    Article  CAS  PubMed  Google Scholar 

  20. Lee BK, Bhinge AA, Iyer VR. Wide-ranging functions of E2F4 in transcriptional activation and repression revealed by genome-wide analysis. Nucleic Acids Res. 2011;39:3558–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chong JL, Wenzel PL, Saenz-Robles MT, Nair V, Ferrey A, Hagan JP, et al. E2f1-3 switch from activators in progenitor cells to repressors in differentiating cells. Nature. 2009;462:930–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moon NS, Frolov MV, Kwon EJ, Di Stefano L, Dimova DK, Morris EJ, et al. Drosophila E2F1 has context-specific pro- and antiapoptotic properties during development. Dev Cell. 2005;9:463–75.

    Article  CAS  PubMed  Google Scholar 

  23. Logan N, Delavaine L, Graham A, Reilly C, Wilson J, Brummelkamp TR, et al. E2F-7: a distinctive E2F family member with an unusual organization of DNA-binding domains. Oncogene. 2004;23:5138–50.

    Article  CAS  PubMed  Google Scholar 

  24. Lammens T, Li J, Leone G, De Veylder L. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol. 2009;19:111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Bruin A, Maiti B, Jakoi L, Timmers C, Buerki R, Leone G. Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J Biol Chem. 2003;278:42041–9.

    Article  PubMed  Google Scholar 

  26. Stefano LD, Jensen MR, Helin K. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J. 2003;22:6289–98.

    Article  PubMed  PubMed Central  Google Scholar 

  27. van der Watt PJ, Ngarande E, Leaner VD. Overexpression of Kpnbeta1 and Kpnalpha2 importin proteins in cancer derives from deregulated E2F activity. PLoS ONE. 2011;6:e27723.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Araki K, Nakajima Y, Eto K, Ikeda MA. Distinct recruitment of E2F family members to specific E2F-binding sites mediates activation and repression of the E2F1 promoter. Oncogene. 2003;22:7632–41.

    Article  CAS  PubMed  Google Scholar 

  29. Liu B, Shats I, Angus SP, Gatza ML, Nevins JR. Interaction of E2F7 transcription factor with E2F1 and C-terminal-binding protein (CtBP) provides a mechanism for E2F7-dependent transcription repression. J Biol Chem. 2013;288:24581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang L, Wang HY, Li JD, Wang JH, Zhou Y, Luo RZ, et al. KPNA2 promotes cell proliferation and tumorigenicity in epithelial ovarian carcinoma through upregulation of c-Myc and downregulation of FOXO3a. Cell Death Dis. 2013;4:e745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Christiansen A, Dyrskjøt L. The functional role of the novel biomarker karyopherin α 2 (KPNA2) in cancer. Cancer Lett. 2013;331:18–23.

    Article  CAS  PubMed  Google Scholar 

  32. Helin K, Wu C-L, Fattaey AR, Lees JA, Dynlacht BD, Ngwu C. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev. 1993;7:1850–61.

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Ran C, Li E, Gordon F, Comstock G, Siddiqui H, et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev Cell. 2008;14:62–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin W-C, Lin F-T, Nevins J. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 2001;15:1833–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Martínez-Balbás MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T. Regulation of E2F1 activity by acetylation. EMBO J. 2000;19:662–71.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang B, Liu K, Lin FT, Lin WC. A role for 14-3-3 tau in E2F1 stabilization and DNA damage-induced apoptosis. J Biol Chem. 2004;279:54140–52.

    Article  CAS  PubMed  Google Scholar 

  37. Korah J, Falah N, Lacerte A, Lebrun JJ. A transcriptionally active pRb-E2F1-P/CAF signaling pathway is central to TGFbeta-mediated apoptosis. Cell Death Dis. 2012;3:e407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao J, Wang W-Y, Mao Y-W, Gräff J, Guan J-S, Pan L, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 2010;466:1105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee EK, Kim HH, Kuwano Y, Abdelmohsen K, Srikantan S, Subaran SS, et al. hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. Nat Struct Mol Biol. 2010;17:732–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zannini L, Lecis D, Lisanti S, Benetti R, Buscemi G, Schneider C, et al. Karyopherin-alpha2 protein interacts with Chk2 and contributes to its nuclear import. J Biol Chem. 2003;278:42346–51.

    Article  CAS  PubMed  Google Scholar 

  41. Alshareeda AT, Negm OH, Green AR, Nolan CC, Tighe P, Albarakati N, et al. KPNA2 is a nuclear export protein that contributes to aberrant localisation of key proteins and poor prognosis of breast cancer. Br J Cancer. 2015;112:1929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tseng S-F, Chang C-Y, Wu K-J, Teng S-C. Importin KPNA2 is required for proper nuclear localization and multiple functions of NBS1. J Biol Chem. 2005;280:39594–600.

    Article  CAS  PubMed  Google Scholar 

  43. Bandara LR, Buck VM, Zamanian M, Johnston LH, La Thangue NB. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2F. EMBO J. 1993;12:4317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ishida H, Masuhiro Y, Fukushima A, Argueta JG, Yamaguchi N, Shiota S, et al. Identification and characterization of novel isoforms of human DP-1: DP-1{alpha} regulates the transcriptional activity of E2F1 as well as cell cycle progression in a dominant-negative manner. J Biol Chem. 2005;280:24642–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Shanghai Key Laboratory of Biliary Tract Disease Research Foundation (17DZ2260200), the National Natural Science Foundation of China (No.91440203, 31620103910, 31601021, 81773043), the development fund for Shanghai talents (No. 201608), and the Precision Medicine Research Program of Shanghai Jiao Tong University School of Medicine (No.15ZH4003, DKY201507). We sincerely thank Professor Shao Rong from Shanghai Jiao Tong University School of Medicine for substantially editing the manuscript and offering constructive suggestions; and A.M. Sieuwerts from Erasmus MC, Dong Qiongzhu from Fudan University for the help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingbin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Shanshan Xiang, Zheng Wang, Yuanyuan Ye.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Wang, Z., Ye, Y. et al. E2F1 and E2F7 differentially regulate KPNA2 to promote the development of gallbladder cancer. Oncogene 38, 1269–1281 (2019). https://doi.org/10.1038/s41388-018-0494-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0494-7

This article is cited by

Search

Quick links