Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Estrogen receptor β promotes the vasculogenic mimicry (VM) and cell invasion via altering the lncRNA-MALAT1/miR-145-5p/NEDD9 signals in lung cancer

Abstract

While estrogen receptor β (ERβ) may impact the progression of non-small cell lung cancer (NSCLC), its linkage to alteration of the vasculogenic mimicry (VM) formation to influence the NSCLC cell invasion remains unclear. Here, we analyzed immunohistochemistry data from NSCLC tissues and found that ERβ-positive NSCLC female patients had worse survival outcomes than those of ERβ-negative NSCLC female patients. In vitro studies using multiple NSCLC cell lines also revealed that ERβ could increase the VM formation and cell invasion. Molecular mechanism dissection suggested that ERβ could increase the lncRNA-MALAT1 (MALAT1) expression via directly binding to the estrogen response elements (EREs) located on the promoter of MALAT1, which could then lead to (i) suppressing the miR145-5p and (ii) increasing the NEDD9 protein expression as miR145-5p can directly target the 3ʹ-UTR of NEDD9-mRNA. A preclinical study using the in vivo mouse model further confirmed the in vitro cell lines data. Together, results from the above studies demonstrated that ERβ can promote NSCLC VM formation and cell invasion via altering the ERβ/MALAT1/miR145-5p/NEDD9 signaling. Targeting this newly identified signaling pathway with small molecules may help the development of novel therapies to better suppress the NSCLC metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shi ZM, Wang L, Shen H, Jiang CF, Ge X, Li DM. et al. Downregulation of miR-218 contributes to epithelial- mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene. 2017;36:2577–2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kiyohara C, Ohno Y. Sex differences in lung cancer susceptibility: a review. Gend Med. 2010;7:381–401.

    Article  PubMed  Google Scholar 

  3. Belani CP, Marts S, Schiller J, Socinski MA. Women and lung cancer: epidemiology, tumor biology, and emerging trends in clinical research. Lung Cancer. 2007;55:15–23.

    Article  PubMed  Google Scholar 

  4. Rodriguez-Lara V, Ignacio GS, Cerbon Cervantes MA. Estrogen induces CXCR4 overexpression and CXCR4/CXL12 pathway activation in lung adenocarcinoma cells in vitro. Endocr Res. 2017;42:219–231.

    CAS  PubMed  Google Scholar 

  5. Siegfried JM, Stabile LP. Estrongenic steroid hormones in lung cancer. Semin Oncol. 2014;41:5–16.

    Article  CAS  PubMed  Google Scholar 

  6. Lother SA, Harding GA, Musto G, Navaratnam S, Pitz MW. Antiestrogen use and survival of women with non-small cell lung cancer in Manitoba, Canada. Horm Cancer. 2013;4:270–6.

    Article  CAS  PubMed  Google Scholar 

  7. Marquez-Garban DC, Chen HW, Goodglick L, Fishbein MC, Pietras RJ. Targeting aromatase and estrogen signaling in human non-small cell lung cancer. Ann N Y Acad Sci. 2009;1155:194–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Slowikowski BK, Lianeri M, Jagodzinski PP. Exploring estrogenic activity in lung cancer. Mol Biol Rep. 2017;44:35–50.

    Article  CAS  PubMed  Google Scholar 

  9. Skjefstad K, Grindstad T, Khanehkenari MR, Richardsen E, Donnem T, Kilvaer T, et al. Prognostic relevance of estrogen receptor alpha, beta and aromatase expression in non-small cell lung cancer. Steroids. 2016;113:5–13.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang G, Liu X, Farkas AM, Parwani AV, Lathrop KL, Lenzner D, et al. Estrogen receptor beta functions through nongenomic mechanisms in lung cancer cells. Mol Endocrinol. 2009;23:146–56.

    Article  PubMed  Google Scholar 

  11. Ma L, Zhan P, Liu Y, Zhou Z, Zhu Q, Miu Y, et al. Prognostic value of the expression of estrogen receptor beta in patients with non-small cell lung cancer: a meta-analysis. Transl Lung Cancer Res. 2016;5:202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luo Z, Wu R, Jiang Y, Qiu Z, Chen W, Li W. Overexpression of estrogen receptor beta is a prognostic marker in non-small cell lung cancer: a meta-analysis. Int J Clin Exp Med. 2015;8:8686–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao G, Nie Y, Lv M, He L, Wang T, Hou Y. ERbeta-mediated estradiol enhances epithelial mesenchymal transition of lung adenocarcinoma through increasing transcription of midkine. Mol Endocrinol. 2012;26:1304–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155:739–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yao L, Zhang D, Zhao X, Sun B, Liu Y, Gu Q, et al. Dickkopf-1-promoted vasculogenic mimicry in non-small cell lung cancer is associated with EMT and development of a cancer stem-like cell phenotype. J Cell Mol Med. 2016;20:1673–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aiello A, Bacci L, Re A, Ripoli C, Pierconti F, Pinto F, et al. MALAT1 and HOTAIR long non-coding RNAs play opposite role in estrogen-mediated transcriptional regulation in prostate cancer cells. Sci Rep. 2016;6:38414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen L, Chen L, Wang Y, Jiang X, Xia H, Zhuang Z. Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. J Neurooncol. 2015;121:101–8.

    Article  CAS  PubMed  Google Scholar 

  18. Huang NS, Chi YY, Xue JY, Liu MY, Huang S, Mo M, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) interacts with estrogen receptor and predicted poor survival in breast cancer. Oncotarget. 2016;7:37957–65.

    PubMed  PubMed Central  Google Scholar 

  19. Liu S, Song L, Zeng S, Zhang L. MALAT1-miR-124-RBG2 axis is involved in growth and invasion of HR-HPV-positive cervical cancer cells. Tumour Biol. 2016;37:633–40.

    Article  PubMed  Google Scholar 

  20. Wang X, Li M, Wang Z, Han S, Tang X, Ge Y, et al. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J Biol Chem. 2015;290:3925–35.

    Article  CAS  PubMed  Google Scholar 

  21. Liu R, Li J, Lai Y, Liao Y, Liu R, Qiu W. Hsa-miR-1 suppresses breast cancer development by down-regulating K-ras and long non-coding RNA MALAT1. Int J Biol Macromol. 2015;81:491–7.

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Li Y, Liu J, Fan Y, Li X, Dong M, et al. Expression levels of microRNA-145 and microRNA-10b are associated with metastasis in non-small cell lung cancer. Cancer Biol Ther. 2016;17:272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu H, Xu Z, Li C, Xu C, Lei Z, Zhang HT, et al. MiR-145 and miR-203 represses TGF-beta-induced epithelial-mesenchymal transition and invasion by inhibiting SMAD3 in non-small cell lung cancer cells. Lung Cancer. 2016;97:87–94.

    Article  PubMed  Google Scholar 

  24. Xia W, Chen Q, Wang J, Mao Q, Dong G, Shi R, et al. DNA methylation mediated silencing of microRNA-145 is a potential prognostic marker in patients with lung adenocarcinoma. Sci Rep. 2015;5:16901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu H, He Y, Lin L, Qi Z, Ma L, Li L, et al. Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145. Tumour Biol. 2016;37:1683–91.

    Article  CAS  PubMed  Google Scholar 

  26. Hammoud Z, Tan B, Badve S, Bigsby RM. Estrogen promotes tumor progression in a genetically defined mouse model of lung adenocarcinoma. Endocr Relat Cancer. 2008;15:475–83.

    Article  CAS  PubMed  Google Scholar 

  27. Nose N, Uramoto H, Iwata T, Hanagiri T, Yasumoto K. Expression of estrogen receptor beta predicts a clinical response and longer progression-free survival after treatment with EGFR-TKI for adenocarcinoma of the lung. Lung Cancer. 2011;71:350–5.

    Article  PubMed  Google Scholar 

  28. Monica V, Longo M, Felice B, Scagliotti GV, Papotti M, Novello S. Role of hormone receptor expression in patients with advanced-stage lung cancer treated with chemotherapy. Clin Lung Cancer. 2012;13:416–23.

    Article  CAS  PubMed  Google Scholar 

  29. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1:391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu J, Peng WX, Mo YY, Luo D. MALAT1-mediated tumorigenesis. Front Biosci (Landmark Ed). 2017;22:66–80.

    Article  CAS  Google Scholar 

  31. Wang JZ, Xiang JJ, Wu LG, Bai YS, Chen ZW, Yin XQ, et al. A genetic variant in long non-coding RNA MALAT1 associated with survival outcome among patients with advanced lung adenocarcinoma: a survival cohort analysis. BMC Cancer. 2017;17:167.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang CG, Yin DD, Sun SY, Han L. The use of lncRNA analysis for stratification management of prognostic risk in patients with NSCLC. Eur Rev Med Pharmacol Sci. 2017;21:115–9.

    PubMed  Google Scholar 

  33. Chen Y, Li C, Pan Y, Han S, Feng B, Gao Y, et al. The emerging role and promise of long noncoding RNAs in lung cancer treatment. Cell Physiol Biochem. 2016;38:2194–206.

    Article  CAS  PubMed  Google Scholar 

  34. Cui D, Yu CH, Liu M, Xia QQ, Zhang YF, Jiang WL. Long non-coding RNA PVT1 as a novel biomarker for diagnosis and prognosis of non-small cell lung cancer. Tumour Biol. 2016;37:4127–34.

    Article  CAS  PubMed  Google Scholar 

  35. Lu Y, Zhou X, Xu L, Rong C, Shen C, Bian W. Long noncoding RNA ANRIL could be transactivated by c-Myc and promote tumor progression of non-small-cell lung cancer. Onco Targets Ther. 2016;9:3077–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Luo J, Tang L, Zhang J, Ni J, Zhang HP, Zhang L, et al. Long non-coding RNA CARLo-5 is a negative prognostic factor and exhibits tumor pro-oncogenic activity in non-small cell lung cancer. Tumour Biol. 2014;35:11541–9.

    Article  CAS  PubMed  Google Scholar 

  37. Nie FQ, Sun M, Yang JS, Xie M, Xu TP, Xia R, et al. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther. 2015;14:268–77.

    Article  CAS  PubMed  Google Scholar 

  38. Qiu M, Xu Y, Yang X, Wang J, Hu J, Xu L, et al. CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of non-small cell lung cancer. Tumour Biol. 2014;35:5375–80.

    Article  CAS  PubMed  Google Scholar 

  39. Wan L, Sun M, Liu GJ, Wei CC, Zhang EB, Kong R, et al. Long noncoding RNA PVT1 promotes non-small cell lung cancer cell proliferation through epigenetically regulating LATS2 expression. Mol Cancer Ther. 2016;15:1082–94.

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Liu H, Shi X, Yao Y, Yang W, Song Y. The long non-coding RNA HNF1A-AS1 regulates proliferation and metastasis in lung adenocarcinoma. Oncotarget. 2015;6:9160–72.

    PubMed  PubMed Central  Google Scholar 

  41. Zhu L, Liu J, Ma S, Zhang S. Long noncoding RNA MALAT-1 can predict metastasis and a poor prognosis: a meta-analysis. Pathol Oncol Res. 2015;21:1259–64.

    Article  CAS  PubMed  Google Scholar 

  42. Chiang YY, Chow KC, Lin TY, Chiang IP, Fang HY. Hepatocyte growth factor and HER2/neu downregulate expression of apoptosis-inducing factor in non-small cell lung cancer. Oncol Rep. 2014;31:597–604.

    Article  CAS  PubMed  Google Scholar 

  43. Ding XY, Ding J, Wu K, Wen W, Liu C, Yan HX, et al. Cross-talk between endothelial cells and tumor via delta-like ligand 4/Notch/PTEN signaling inhibits lung cancer growth. Oncogene. 2012;31:2899–906.

    Article  CAS  PubMed  Google Scholar 

  44. He J, Hu Y, Hu M, Zhang S, Li B. The relationship between the preoperative plasma level of HIF-1alpha and clinic pathological features, prognosis in non-small cell lung cancer. Sci Rep. 2016;6:20586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang R, Zhang J, Chen S, Lu M, Luo X, Yao S, et al. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer. 2011;74:188–96.

    Article  PubMed  Google Scholar 

  46. Rousseau B, Jacquot C, Le Palabe J, Malleter M, Tomasoni C, Boutard T, et al. TP53 transcription factor for the NEDD9/HEF1/Cas-L gene: potential targets in Non-Small Cell Lung Cancer treatment. Sci Rep. 2015;5:10356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang T, Qiao M, Zhou F, Ren S, Su C, Zhou C. Effect of combined therapy inhibiting EGFR and VEGFR pathways in non-small-cell lung cancer on progression-free and overall survival. Clin Lung Cancer. 2016;18:421–31.

    Article  PubMed  Google Scholar 

  48. Onn A, Isobe T, Itasaka S, Wu W, O’Reilly MS, Ki Hong W, et al. Development of an orthotopic model to study the biology and therapy of primary human lung cancer in nude mice. Clin Cancer Res. 2003;9:5532–9.

    CAS  PubMed  Google Scholar 

  49. Wu CT, Chang YL, Shih JY, Lee YC. The significance of estrogen receptor beta in 301 surgically treated non-small cell lung cancers. Hum Pathol. 2005;36:1108–12.

    Article  CAS  PubMed  Google Scholar 

  50. Choi I, Ko C, Park-Sarge OK, Nie RA, Hess RA, Graves C, et al. Human estrogen receptor beta-specific monoclonal antibodies: characterization and use in studies of estrogen receptor beta protein expression in reproductive tissues. Mol Cell Endocrinol. 2001;181:139–50.

    Article  CAS  PubMed  Google Scholar 

  51. Hartman J, Strom A, Gustafsson JA. Current concepts and significance of estrogen receptor beta in prostate cancer. Steroids. 2012;77:1262–6.

    Article  CAS  PubMed  Google Scholar 

  52. Weitsman GE, Skliris G, Ung K, Peng B, Younes M, Watson PH, et al. Assessment of multiple different estrogen receptor-beta antibodies for their ability to immunoprecipitate under chromatin immunoprecipitation conditions. Breast Cancer Res Treat. 2006;100:23–31.

    Article  CAS  PubMed  Google Scholar 

  53. Wu X, Subramaniam M, Negron V, Cicek M, Reynolds C, Lingle WL, et al. Development, characterization, and applications of a novel estrogen receptor beta monoclonal antibody. J Cell Biochem. 2012;113:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nelson AW, Groen AJ, Miller JL, Warren AY, Holmes KA, Tarulli GA, et al. Comprehensive assessment of estrogen receptor beta antibodies in cancer cell line models and tissue reveals critical limitations in reagent specificity. Mol Cell Endocrinol. 2017;15:138–50.

    Article  Google Scholar 

  55. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. Invitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23. Nov

    Article  CAS  PubMed  Google Scholar 

  56. Ruby MP, Bruce EJ, Daniel C. NCI-Navy medical oncology branch cell line supplement. J Cell Biochem Suppl. 1996;24:1–291.

    Google Scholar 

  57. Hudgel DW. LL Jr, JC Selner, K Mcintosh. Viral and bacterial infections in adults with chronic asthma. Am Rev Respir Dis. 1979;120:393–7.

    CAS  PubMed  Google Scholar 

  58. Casero RA Jr, Baylin SB, Nelkin BD, Luk GD. Human lung tumor sensitivity to difluoromethylornithine as related to ornithine decarboxylase messenger RNA levels. Biochem Biophys Res Commun. 1986;134:572–9. Jan 29

    Article  CAS  PubMed  Google Scholar 

  59. Liu M, Sun W, Liu Y, Dong X. The role of lncRNA MALAT1 in bone metastasis in patients with non-small cell lung cancer. Oncol Rep. 2016;36:1679–85.

    Article  CAS  PubMed  Google Scholar 

  60. Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, et al. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol. 2000;74:311–7.

    Article  CAS  PubMed  Google Scholar 

  61. Safe S. Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm. 2001;62:231–52.

    Article  CAS  PubMed  Google Scholar 

  62. Lu R, Ji Z, Li X, Zhai Q, Zhao C, Jiang Z, et al. miR-145 functions as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in renal cell carcinoma. J Cancer Res Clin Oncol. 2014;140:387–97.

    Article  CAS  PubMed  Google Scholar 

  63. Jin Y, Li F, Zheng C, Wang Y, Fang Z, Guo C, et al. NEDD9 promotes lung cancer metastasis through epithelial-mesenchymal transition. Int J Cancer. 2014;134:2294–304.

    Article  CAS  PubMed  Google Scholar 

  64. Morimoto K, Tanaka T, Nitta Y, Ohnishi K, Kawashima H, Nakatani T. NEDD9 crucially regulates TGF-beta-triggered epithelial-mesenchymal transition and cell invasion in prostate cancer cells: involvement in cancer progressiveness. Prostate. 2014;74:901–10.

    Article  CAS  PubMed  Google Scholar 

  65. Shagisultanova E, Gaponova AV, Gabbasov R, Nicolas E, Golemis EA. Preclinical and clinical studies of the NEDD9 scaffold protein in cancer and other diseases. Gene. 2015;567:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Coelho AL, Gomes MP, Catarino RJ, Rolfo C, Lopes AM, Medeiros RM, et al. Angiogenesis in NSCLC: is vessel co-option the trunk that sustains the branches? Oncotarget. 2017;8:39795–804.

    Article  PubMed  Google Scholar 

  67. Wu W, Onn A, Isobe T, Itasaka S, Langley RR, Shitani T, et al. Targeted therapy of orthotopic human lung cancer by combined vascular endothelial growth factor and epidermal growth factor receptor signaling blockade. Mol Cancer Ther. 2007;6:471–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by George Whipple Professorship Endowment. We thank Karen Wolf for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuntai Zhang or Shuyuan Yeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Weiwei Yu, Jie Ding

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Ding, J., He, M. et al. Estrogen receptor β promotes the vasculogenic mimicry (VM) and cell invasion via altering the lncRNA-MALAT1/miR-145-5p/NEDD9 signals in lung cancer. Oncogene 38, 1225–1238 (2019). https://doi.org/10.1038/s41388-018-0463-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0463-1

This article is cited by

Search

Quick links