Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Rac1 splice form Rac1b favors mouse colonic mucosa regeneration and contributes to intestinal cancer progression

Abstract

We previously have identified the ectopic expression of Rac1b, an activated and novel splice variant of Rac1, in a subset of human colorectal adenocarcinomas, as well as in inflammatory bowel diseases and in colitis mouse model. Rac1b overexpression has been further evidenced in breast, pancreatic, thyroid, ovarian, and lung cancers. In this context, the aim of our study was to investigate the physiopathological implications of Rac1b in intestinal inflammation and carcinogenesis in vivo. The ectopic expression of Rac1b was induced in mouse intestinal epithelial cells after crossing Rosa26-LSL-Rac1b and villin-Cre mice. These animals were let to age or were challenged with dextran sulfate sodium (DSS) to induce experimental colitis, or either received azoxymethane (AOM)/DSS treatment, or were bred with ApcMin/+ or Il10−/− mice to trigger intestinal tumors. Rac1b ectopic expression increased the intestinal epithelial cell proliferation and migration, enhanced the production of reactive oxygen species, and promoted the Paneth cell lineage. Although Rac1b overexpression alone was not sufficient to drive intestinal neoplasia, it enhanced Apc-dependent intestinal tumorigenesis. In the context of Il10 knockout, the Rac1b transgene strengthened colonic inflammation due to induced intestinal mucosa permeability and promoted cecum and proximal colon carcinogenesis. In contrast, Rac1b alleviated carcinogen/acute inflammation-associated colon carcinogenesis (AOM/DSS). This resulted at least partly from the early mucosal repair after resolution of inflammation. Our data highlight the critical role of Rac1b in driving wound-healing after resolution of intestinal inflammation, and in cooperating with Wnt pathway dysregulation and chronic inflammation to promote intestinal carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

    Article  CAS  Google Scholar 

  2. Kotelevets L, Chastre E, Desmaële D, Couvreur P. Nanotechnologies for the treatment of colon cancer: from old drugs to new hope. Int J Pharm. 2016;514:24–40.

    Article  CAS  Google Scholar 

  3. Jordan P, Brazåo R, Boavida MG, Gespach C, Chastre E. Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene. 1999;18:6835–9.

    Article  CAS  Google Scholar 

  4. Goncalves V, Matos P, Jordan P. Antagonistic SR proteins regulate alternative splicing of tumor-related Rac1b downstream of the PI3-kinase and Wnt pathways. Hum Mol Genet. 2009;18:3696–707.

    Article  CAS  Google Scholar 

  5. Wang F, Fu X, Chen P, Wu P, Fan X, Li N, et al. SPSB1-mediated HnRNP A1 ubiquitylation regulates alternative splicing and cell migration in EGF signaling. Cell Res. 2017;27:540–58.

    Article  CAS  Google Scholar 

  6. Matos P, Collard JG, Jordan P. Tumor-related alternatively spliced Rac1b is not regulated by Rho-GDP dissociation inhibitors and exhibits selective downstream signaling. J Biol Chem. 2003;278:50442–8.

    Article  CAS  Google Scholar 

  7. Matos P, Jordan P. Increased Rac1b expression sustains colorectal tumor cell survival. Mol Cancer Res. 2008;6:1178–84.

    Article  CAS  Google Scholar 

  8. Matos P, Jordan P. Rac1, but not Rac1B, stimulates RelB-mediated gene transcription in colorectal cancer cells. J Biol Chem. 2006;281:13724–32.

    Article  CAS  Google Scholar 

  9. Orlichenko L, Geyer R, Yanagisawa M, Khauv D, Radisky ES, Anastasiadis PZ, et al. The 19-amino acid insertion in the tumor-associated splice isoform Rac1b confers specific binding to p120 catenin. J Biol Chem. 2010;285:19153–61.

    Article  CAS  Google Scholar 

  10. Lee K, Chen QK, Lui C, Cichon MA, Radisky DC, Nelson CM. Matrix compliance regulates Rac1b localization, NADPH oxidase assembly, and epithelial-mesenchymal transition. Mol Biol Cell. 2012;23:4097–108.

    Article  CAS  Google Scholar 

  11. Kang HT, Park JT, Choi K, Choi HJC, Jung CW, Kim GR, et al. Chemical screening identifies ROCK as a target for recovering mitochondrial function in Hutchinson-Gilford progeria syndrome. Aging Cell. 2017;16:541–50.

    Article  CAS  Google Scholar 

  12. Matos P, Oliveira C, Velho S, Goncalves V, da Costa LT, Moyer MP, et al. B-RafV600E cooperates with alternative spliced Rac1b to sustain colorectal cancer cell survival. Gastroenterology. 2008;135:899–906.

    Article  CAS  Google Scholar 

  13. Alonso-Espinaco V, Cuatrecasas M, Alonso V, Escudero P, Marmol M, Horndler C, et al. RAC1b overexpression correlates with poor prognosis in KRAS/BRAF WT metastatic colorectal cancer patients treated with first-line FOLFOX/XELOX chemotherapy. Eur J Cancer. 2014;50:1973–81.

    Article  CAS  Google Scholar 

  14. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, et al. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene. 2000;19:3013–20.

    Article  CAS  Google Scholar 

  15. Silva AL, Carmo F, Bugalho MJ. RAC1b overexpression in papillary thyroid carcinoma: a role to unravel. Eur J Endocrinol. 2013;168:795–804.

    Article  CAS  Google Scholar 

  16. Guo Y, Kenney SR, Muller CY, Adams S, Rutledge T, Romero E, et al. R-ketorolac targets cdc42 and rac1 and alters ovarian cancer cell behaviors critical for invasion and metastasis. Mol Cancer Ther. 2015;14:2215–27.

    Article  CAS  Google Scholar 

  17. Ungefroren H, Sebens S, Giehl K, Helm O, Groth S, Fandrich F, et al. Rac1b negatively regulates TGF-β1-induced cell motility in pancreatic ductal epithelial cells by suppressing Smad signalling. Oncotarget. 2014;5:277–90.

    Article  Google Scholar 

  18. Mehner C, Miller E, Nassar A, Bamlet WR, Radisky ES, Radisky DC. Tumor cell expression of MMP3 as a prognostic factor for poor survival in pancreatic, pulmonary, and mammary carcinoma. Genes Cancer. 2015;6:480–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, et al. Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression. Sci Transl Med. 2012;4:142ra95.

    Article  Google Scholar 

  20. Zhou C, Licciulli S, Avila JL, Cho M, Troutman S, Jiang P, et al. The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis. Oncogene. 2013;32:903–9.

    Article  CAS  Google Scholar 

  21. Kazanietz MG, Caloca M-J. The Rac GTPase in cancer: from old concepts to new paradigms. Cancer Res. 2017;77:5545–451.

    Article  Google Scholar 

  22. Matos P, Jordan P. Expression of Rac1b stimulates NF-kappaB-mediated cell survival and G1/S progression. Exp Cell Res. 2005;305:292–9.

    Article  CAS  Google Scholar 

  23. Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Der CJ. Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene. 2004;23:9369–80.

    Article  CAS  Google Scholar 

  24. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 2005;436:123–7.

    Article  CAS  Google Scholar 

  25. Matos P, Kotelevets L, Goncalves V, Henriques AFA, Henriques A, Zerbib P, et al. Ibuprofen inhibits colitis-induced overexpression of tumor-related Rac1b. Neoplasia. 2013;15:102–11.

    Article  CAS  Google Scholar 

  26. Li G, Ying L, Wang H, Wei S-S, Chen J, Chen Y-H, et al. Rac1b enhances cell survival through activation of the JNK2/c-JUN/Cyclin-D1 and AKT2/MCL1 pathways. Oncotarget. 2016;7:17970–85.

    PubMed  PubMed Central  Google Scholar 

  27. Sobhani I, Lehy T, Laurent-Puig P, Cadiot G, Ruszniewski P, Mignon M. Chronic endogenous hypergastrinemia in humans: evidence for a mitogenic effect on the colonic mucosa. Gastroenterology. 1993;105:22–30.

    Article  CAS  Google Scholar 

  28. Kotelevets L, Chastre E, Caron J, Mougin J, Bastian G, Pineau A, et al. A squalene-based nanomedicine for oral treatment of colon cancer. Cancer Res. 2017;77:2964–75.

    Article  CAS  Google Scholar 

  29. Mahler JF, Stokes W, Mann PC, Takaoka M, Maronpot RR. Spontaneous lesions in aging FVB/N mice. Toxicol Pathol. 1996;24:710–6.

    Article  CAS  Google Scholar 

  30. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111:241–50.

    Article  Google Scholar 

  31. Esufali S, Charames GS, Pethe VV, Buongiorno P, Bapat B. Activation of tumor-specific splice variant Rac1b by dishevelled promotes canonical Wnt signaling and decreased adhesion of colorectal cancer cells. Cancer Res. 2007;67:2469–79.

    Article  CAS  Google Scholar 

  32. Pethe VV, Charames GS, Bapat B. Rac1b recruits Dishevelled and β-catenin to Wnt target gene promoters independent of Wnt3A stimulation. Int J Oncol. 2011;39:805–10.

    CAS  PubMed  Google Scholar 

  33. Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DVF, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 2016;530:340–3.

    Article  CAS  Google Scholar 

  34. Stappenbeck TS, Gordon JI. Rac1 mutations produce aberrant epithelial differentiation in the developing and adult mouse small intestine. Development. 2000;127:2629–42.

    CAS  PubMed  Google Scholar 

  35. Andreu P, Peignon G, Slomianny C, Taketo MM, Colnot S, Robine S, et al. A genetic study of the role of the Wnt/beta-catenin signalling in Paneth cell differentiation. Dev Biol. 2008;324:288–96.

    Article  CAS  Google Scholar 

  36. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469:415–8.

    Article  CAS  Google Scholar 

  37. Rodríguez-Colman MJ, Schewe M, Meerlo M, Stigter E, Gerrits J, Pras-Raves M, et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature. 2017;543:424–7.

    Article  Google Scholar 

  38. Myant KB, Cammareri P, McGhee EJ, Ridgway RA, Huels DJ, Cordero JB, et al. ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell. 2013;12:761–73.

    Article  CAS  Google Scholar 

  39. Kato M, Marumo M, Nakayama J, Matsumoto M, Yabe-Nishimura C, Kamata T. The ROS-generating oxidase Nox1 is required for epithelial restitution following colitis. Exp Anim. 2016;65:197–205.

    Article  CAS  Google Scholar 

  40. Curtis KM, Gomez LA, Schiller PC. Rac1b regulates NT3-stimulated Mek-Erk signaling, directing marrow-isolated adult multilineage inducible (MIAMI) cells toward an early neuronal phenotype. Mol Cell Neurosci. 2012;49:138–48.

    Article  CAS  Google Scholar 

  41. Mori Y, Yagi S, Sakurai A, Matsuda M, Kiyokawa E. Insufficient ability of Rac1b to perturb cystogenesis. Small GTPases. 2013;4:9–15.

    Article  Google Scholar 

  42. Espinha G, Osaki JH, Magalhaes YT, Forti FL. Rac1 GTPase-deficient HeLa cells present reduced DNA repair, proliferation, and survival under UV or gamma irradiation. Mol Cell Biochem. 2015;404:281–97.

    Article  CAS  Google Scholar 

  43. Lessel W, Silver A, Jechorek D, Guenther T, Roehl F-W, Kalinski T, et al. Inactivation of JNK2 as carcinogenic factor in colitis-associated and sporadic colorectal carcinogenesis. Carcinogenesis. 2017;38:559–69.

    Article  CAS  Google Scholar 

  44. Cole AM, Ridgway RA, Derkits SE, Parry L, Barker N, Clevers H, et al. p21 loss blocks senescence following Apc loss and provokes tumourigenesis in the renal but not the intestinal epithelium. EMBO Mol Med. 2010;2:472–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Sylvie Robine (Institut Curie, Paris, France) for her donation of the villin-Cre (B6-Tg(Vil-cre)20Sy/Nci) mice. The authors greatly thank Valérie Gratio of the CRI cytometry facility. The authors are indebted to Dr. Samira Benadda (INSERM U1149) for her assistance in confocal microscopy, and Olivier Thibaudeau (INSERM U1152) for help in histologic experiments. This work was supported by French minister of higher education and research, INSERM, and University Paris Diderot.

Author contributions

LK and EC conceived the study; LK, PJ, and EC designed the experiments; LK, EC, and GM performed the experiments; TL and FW performed the histologic analyses; LK, FW, GM, TL, PJ, and EC analyzed and interpreted the data; LK and EC wrote the manuscript with comments from PJ, TL, and FW.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Larissa Kotelevets or Eric Chastre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotelevets, L., Walker, F., Mamadou, G. et al. The Rac1 splice form Rac1b favors mouse colonic mucosa regeneration and contributes to intestinal cancer progression. Oncogene 37, 6054–6068 (2018). https://doi.org/10.1038/s41388-018-0389-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0389-7

This article is cited by

Search

Quick links