Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNA-seq analysis identifies different transcriptomic types and developmental trajectories of primary melanomas


Recent studies revealed trajectories of mutational events in early melanomagenesis, but the accompanying changes in gene expression are far less understood. Therefore, we performed a comprehensive RNA-seq analysis of laser-microdissected melanocytic nevi (n = 23) and primary melanoma samples (n = 57) and characterized the molecular mechanisms of early melanoma development. Using self-organizing maps, unsupervised clustering, and analysis of pseudotime (PT) dynamics to identify evolutionary trajectories, we describe here two transcriptomic types of melanocytic nevi (N1 and N2) and primary melanomas (M1 and M2). N1/M1 lesions are characterized by pigmentation-type and MITF gene signatures, and a high prevalence of NRAS mutations in M1 melanomas. N2/M2 lesions are characterized by inflammatory-type and AXL gene signatures with an equal distribution of wild-type and mutated BRAF and low prevalence of NRAS mutations in M2 melanomas. Interestingly, N1 nevi and M1 melanomas and N2 nevi and M2 melanomas, respectively, cluster together, but there is no clustering in a stage-dependent manner. Transcriptional signatures of M1 melanomas harbor signatures of BRAF/MEK inhibitor resistance and M2 melanomas harbor signatures of anti-PD-1 antibody treatment resistance. Pseudotime dynamics of nevus and melanoma samples are suggestive for a switch-like immune-escape mechanism in melanoma development with downregulation of immune genes paralleled by an increasing expression of a cell cycle signature in late-stage melanomas. Taken together, the transcriptome analysis identifies gene signatures and mechanisms underlying development of melanoma in early and late stages with relevance for diagnostics and therapy.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–96.

    Article  Google Scholar 

  2. 2.

    Solus JF, Kraft S. Ras, Raf, and MAP kinase in melanoma. Adv Anat Pathol. 2013;20:217–26.

    CAS  Article  Google Scholar 

  3. 3.

    Schadendorf D, Fisher DE, Garbe C, Gershenwald JE, Grob JJ, Halpern A, et al. Melanoma. Nat Rev Dis Prim. 2015;1:1–20.

    Google Scholar 

  4. 4.

    Sullivan RJ, Flaherty KT. New strategies in melanoma: entering the era of combinatorial therapy. Clin Cancer Res. 2015;21:2424–35.

    CAS  Article  Google Scholar 

  5. 5.

    Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373:1926–36.

    Article  Google Scholar 

  6. 6.

    Winnepenninckx V, Lazar V, Michiels S, Dessen P, Stas M, Alonso SR, et al. Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst. 2006;98:472–82.

    CAS  Article  Google Scholar 

  7. 7.

    Jönsson G, Busch C, Knappskog S, Geisler J, Miletic H, Ringnér M, et al. Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clin Cancer Res. 2010;16:3356–67.

    Article  Google Scholar 

  8. 8.

    Harbst K, Staaf J, Lauss M, Karlsson A, Måsbäck A, Johansson I, et al. Molecular profiling reveals low- and high-grade forms of primary melanoma. Clin Cancer Res. 2012;18:4026–36.

    CAS  Article  Google Scholar 

  9. 9.

    Cirenajwis H, Ekedahl H, Lauss M, Harbst K, Carneiro A, Enoksson J, et al. Molecular stratification of metastatic melanoma using gene expression profiling: prediction of survival outcome and benefit from molecular targeted therapy. Oncotarget. 2015;6:12297–309.

    Article  Google Scholar 

  10. 10.

    Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell. 2017;168:629–43.

    CAS  Article  Google Scholar 

  11. 11.

    Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, Piris A, et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 2014;4:816–27.

    CAS  Article  Google Scholar 

  12. 12.

    Müller J, Krijgsman O, Tsoi J, Robert L, Hugo W, Song C, et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun. 2014;5:5712.

    Article  Google Scholar 

  13. 13.

    Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg. 1970;172:902–8.

    CAS  Article  Google Scholar 

  14. 14.

    Kauffmann A, Rosselli F, Lazar V, Winnepenninckx V, Mansuet-Lupo A, Dessen P, et al. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene. 2008;27:565–73.

    CAS  Article  Google Scholar 

  15. 15.

    Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database Hallmark gene set collection. Cell Syst. 2015;1:417–25.

    CAS  Article  Google Scholar 

  16. 16.

    Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189–96.

    CAS  Article  Google Scholar 

  17. 17.

    Hugo W, Shi H, Sun L, Piva M, Song C, Kong X, et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell. 2015;162:1271–85.

    CAS  Article  Google Scholar 

  18. 18.

    Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165:35–44.

    CAS  Article  Google Scholar 

  19. 19.

    Wirth H, Löffler M, von Bergen M, Binder H. Expression cartography of human tissues using self organizing maps. BMC Bioinforma. 2011;12:306.

    Article  Google Scholar 

  20. 20.

    Binder H, Wirth H. Analysis of large-scale OMIC data using self organizing maps. In: Khosrow-Pour M (ed). Encyclopedia of Information Science and Technology, 3 rd edn. IGI Global: Hershey, PA, USA, 2014, pp 1642–1654.

  21. 21.

    Camp JG, Sekine K, Gerber T, Loeffler-Wirth H, Binder H, Gac M, et al. Multilineage communication regulates human liver bud development from pluripotency. Nature. 2017;546:533–8.

    CAS  PubMed  Google Scholar 

  22. 22.

    Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL, et al. The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA. 2005;102:6092–7.

    CAS  Article  Google Scholar 

  23. 23.

    Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.

    Article  Google Scholar 

  24. 24.

    Keenen B, Qi H, Saladi SV, Yeung M, de la Serna IL. Heterogeneous SWI/SNF chromatin remodeling complexes promote expression of microphthalmia-associated transcription factor target genes in melanoma. Oncogene. 2010;29:81–92.

    CAS  Article  Google Scholar 

  25. 25.

    Lin H, Wong RP, Martinka M, Li G. BRG1 expression is increased in human cutaneous melanoma. Br J Dermatol. 2010;163:502–10.

    CAS  Article  Google Scholar 

  26. 26.

    Clarke LE, Warf BM, Flake DD 2nd, Hartman AR, Tahan S, Shea CR, et al. Clinical validation of a gene expression signature that differentiates benign nevi from malignant melanoma. J Cutan Pathol. 2015;42:244–52.

    Article  Google Scholar 

  27. 27.

    Clarke LE, Flake DD 2nd, Busam K, Cockerell C, Helm K, McNiff J, et al. An independent validation of a gene expression signature to differentiate malignant melanoma from benign melanocytic nevi. Cancer. 2017;123:617–28.

    CAS  Article  Google Scholar 

  28. 28.

    Hulstaert E, Brochez L, Volders PJ, Vandesompele J, Mestdagh P. Long non-coding RNAs in cutaneous melanoma: clinical perspectives. Oncotarget. 2017;8:43470–80.

    Article  Google Scholar 

  29. 29.

    Bendall SC, Davis KL, Amir el-AD, Tadmor MD, Simonds EF, Chen TJ, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014;157:714–25.

    CAS  Article  Google Scholar 

  30. 30.

    Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–95.

    CAS  Article  Google Scholar 

  31. 31.

    Angelova M, Charoentong P, Hackl H, Fischer ML, Snajder R, Krogsdam AM, et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 2015;16:64.

    Article  Google Scholar 

  32. 32.

    Gerber T, Willscher E, Loeffler-Wirth H, Hopp L, Schadendorf D, Schartl M, et al. Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq. Oncotarget. 2017;8:846–62.

    Article  Google Scholar 

  33. 33.

    Riesenberg S, Groetchen A, Siddaway R, Bald T, Reinhardt J, Smorra D, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun. 2015;6:8755.

    CAS  Article  Google Scholar 

  34. 34.

    Maurus K, Hufnagel A, Geiger F, Graf S, Berking C, Heinemann A, et al. The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation. Oncogene. 2017;36:5110–21.

    CAS  Article  Google Scholar 

  35. 35.

    Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell. 2017;171:934–49.

    CAS  Article  Google Scholar 

  36. 36.

    Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6:827–37.

    Article  Google Scholar 

  37. 37.

    Haymaker C, Wu R, Bernatchez C, Radvanyi L. PD-1 and BTLA and CD8(+) T-cell "exhaustion" in cancer: "exercising" an alternative viewpoint. Oncoimmunology. 2012;1:735–8.

    Article  Google Scholar 

  38. 38.

    Saladi SV, Keenen B, Marathe HG, Qi H, Chin KV, de la Serna IL. Modulation of extracellular matrix/adhesion molecule expression by BRG1 is associated with increased melanoma invasiveness. Mol Cancer. 2010;9:280.

    Article  Google Scholar 

  39. 39.

    Campbell KR, Yau C. Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference. PLoS Comput Biol. 2016;12:e1005212.

    Article  Google Scholar 

  40. 40.

    Reid JE, Wernisch L. Pseudotime estimation: deconfounding single cell time series. Bioinformatics. 2016;32:2973–80.

    CAS  Article  Google Scholar 

  41. 41.

    Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 2012;490:412–6.

    CAS  Article  Google Scholar 

  42. 42.

    Jaeger J, Koczan D, Thiesen HJ, Ibrahim SM, Gross G, Spang R, et al. Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin Cancer Res. 2007;13:806–15.

    CAS  Article  Google Scholar 

  43. 43.

    Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26:873–81.

    CAS  Article  Google Scholar 

  44. 44.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  Google Scholar 

  45. 45.

    Wirth H, von Bergen M, Binder H. Mining SOM expression portraits: feature selection and integrating concepts of molecular function. BioData Min. 2012;5:18.

    Article  Google Scholar 

  46. 46.

    Löffler-Wirth H, Kalcher M, Binder H. oposSOM: R-package for high-dimensional portraying of genome-wide expression landscapes on bioconductor. Bioinformatics. 2015;31:3225–7.

    Article  Google Scholar 

  47. 47.

    Törönen P, Ojala P, Marttinen P, Holm L. Robust extraction of functional signals from gene set analysis using a generalized threshold free scoring function. BMC Bioinforma. 2009;10:307.

    Article  Google Scholar 

  48. 48.

    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  Article  Google Scholar 

  49. 49.

    Hopp L, Wirth H, Fasold M, Binder H. Portraying the expression landscapes of cancer subtypes: a glioblastoma multiforme and prostate cancer case study. Syst Biomed. 2013;1:99–121.

    Article  Google Scholar 

  50. 50.

    Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499–507.

    CAS  Article  Google Scholar 

  51. 51.

    Shen H, Powers N, Saini N, Comstock CE, Sharma A, Weaver K, et al. The SWI/SNF ATPase Brm is a gatekeeper of proliferative control in prostate cancer. Cancer Res. 2008;68:10154–62.

    CAS  Article  Google Scholar 

Download references


MK, MD, AB, SM, and MS were supported by funding of the Deutsche Krebshilfe, Melanomverbund, grant number 109716.

Author contributions

MK, HL-W, MD, EW, GD, JK, TK, BN, JL, PZ, CM, HJS, LH, HB, SM, AB, and MS conceived and designed the work that led to the submission, acquired data, and played an important role in interpreting the results and approved the final version. SH, TT, JU, MZ, SK, MH, and AR supported the interpretation of the results and approved the final version.

Author information



Corresponding author

Correspondence to Manfred Kunz.

Ethics declarations

Conflict of interest

MK has received honoraria from the Speakers Bureau of Roche Pharma AG and travel support from Novartis Pharma GmbH and Bristol-Myers Squibb GmbH (BMS). MZ has received speakers honoraria and honoraria for Medical Advisory Boards from BMS, Roche Pharma AG, MSD Sharp & Dohme GmbH (MSD), Amgen GmbH, Novartis Pharma GmbH, Pfizer Pharma GmbH, and Merck Serono GmbH as well as financial support for travel support from BMS and Amgen GmbH. TT has received honoraria from the Speakers Bureau of Roche Pharma AG and travel support from Novartis Pharma GmbH and BMS. CM has received travel support from MSD and Pfizer GmbH and Roche Pharma AG and received honoraria from Novartis Pharma GmbH. JU is on the advisory board or has received honoraria and travel support from Amgen, BMS, GlaxoSmithKline GmbH &nCo, LeoPharma, MSD, Novartis, Roche Pharma AG. AR received travel grants and honoraria from Roche Pharma AG, TEVA, MMS, MSD, Amgen, and Novartis Pharma GmbH and a research grant from Novartis Pharma GmbH. JL, HL-W, MD, EW, GD, JK, LH, SH, PZ, HJS, MH, SK, SM, AB, HB and MS declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kunz, M., Löffler-Wirth, H., Dannemann, M. et al. RNA-seq analysis identifies different transcriptomic types and developmental trajectories of primary melanomas. Oncogene 37, 6136–6151 (2018).

Download citation

Further reading


Quick links