Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The p21-activated kinase 4-Slug transcription factor axis promotes epithelial−mesenchymal transition and worsens prognosis in prostate cancer

Abstract

Epithelial−mesenchymal transition (EMT) facilitates cancer invasion and metastasis and thus accelerates cancer progression. p21-activated kinase 4 (PAK4) is a critical regulator of prostate cancer (PC) progression. Here, we report that PAK4 activation promotes PC progression through the EMT regulator Slug. We find that phosphorylated PAK4S474 (pPAK4) levels, an index of PAK4 activation, were tightly associated with Gleason score (p < 0.001), a clinical indicator of PC progression, but not with prostate serum antigen levels or tumor stage. Stable silencing of PAK4 in PC cells reduced their potential for EMT, cellular invasion, and metastasis in vivo. PAK4 bound and directly phosphorylated Slug at two previously unknown sites, S158 and S254, which resulted in its stabilization. The non-phosphorylatable form SlugS158A/S254A upregulated transcription of CDH1, which encodes E-cadherin, and thus suppressed EMT and invasion, to a greater extent than did wild-type Slug. The strong EMT inducer TGF-β elevated pPAK4 and pSlugS158 levels; PAK4 knockdown or introduction of a dominant-negative form of PAK4 inhibited both TGF-β-stimulated EMT and an increase in pSlugS158 levels. Finally, immunohistochemistry revealed a positive correlation between pPAK4 and pSlugS158 but an inverse correlation between pSlugS158 and E-cadherin. The results suggest that the PAK4–Slug axis represents a novel pathway that promotes PC progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–386.

    Article  CAS  PubMed  Google Scholar 

  2. Hensel J, Thalmann GN. Biology of bone metastases in prostate cancer. Urology. 2016;92:6–13.

    Article  PubMed  Google Scholar 

  3. Broster SA, Kyprianou N. Epithelial−mesenchymal transition in prostatic disease. Future Oncol. 2015;11:3197–206.

    Article  CAS  PubMed  Google Scholar 

  4. Nakazawa M, Kyprianou N. Epithelial−mesenchymal-transition regulators in prostate cancer: androgens and beyond. J Steroid Biochem Mol Biol. 2017;166:84–90.

    Article  CAS  PubMed  Google Scholar 

  5. Nauseef JT, Henry MD. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol. 2011;8:428–39.

    Article  PubMed  Google Scholar 

  6. Chen M, Chen LM, Chai KX. Androgen regulation of prostasin gene expression is mediated by sterol-regulatory element-binding proteins and SLUG. Prostate. 2006;66:911–20.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu ML, Kyprianou N. Role of androgens and the androgen receptor in epithelial−mesenchymal transition and invasion of prostate cancer cells. FASEB J: Off Publ Fed Am Soc Exp Biol. 2010;24:769–77.

    Article  CAS  Google Scholar 

  8. Slabakova E, Pernicova Z, Slavickova E, Starsichova A, Kozubik A, Soucek K. TGF-beta1-induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of SNAI2/Slug. Prostate. 2011;71:1332–43.

    CAS  PubMed  Google Scholar 

  9. Thakur N, Gudey SK, Marcusson A, Fu JY, Bergh A, Heldin CH, et al. TGFbeta-induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1. Cell Cycle. 2014;13:2400–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Al-Azayzih A, Gao F, Somanath PR. P21 activated kinase-1 mediates transforming growth factor beta1-induced prostate cancer cell epithelial to mesenchymal transition. Biochim et Biophys Acta. 2015;1853:1229–39.

    Article  CAS  Google Scholar 

  11. Dominguez D, Montserrat-Sentis B, Virgos-Soler A, Guaita S, Grueso J, Porta M, et al. Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol. 2003;23:5078–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Yang Z, Rayala S, Nguyen D, Vadlamudi RK, Chen S, Kumar R. Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and functions. Cancer Res. 2005;65:3179–84.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6:931–40.

    Article  CAS  PubMed  Google Scholar 

  14. Liu YN, Abou-Kheir W, Yin JJ, Fang L, Hynes P, Casey O, et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition. Mol Cell Biol. 2012;32:941–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Goc A, Al-Azayzih A, Abdalla M, Al-Husein B, Kavuri S, Lee J, et al. P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor beta expression and enhanced matrix metalloproteinase 9 secretion. J Biol Chem. 2013;288:3025–35.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Jia G, Li Y, Liu J, Luo J, Zhang J, et al. Clinicopathological signature of p21-activated kinase 1 in prostate cancer and its regulation of proliferation and autophagy via the mTOR signaling pathway. Oncotarget. 2017;8:22563–80.

    PubMed  PubMed Central  Google Scholar 

  17. Park MH, Lee HS, Lee CS, You ST, Kim DJ, Park BH, et al. p21-Activated kinase 4 promotes prostate cancer progression through CREB. Oncogene. 2013;32:2475–82.

    Article  CAS  PubMed  Google Scholar 

  18. Baritaki S, Yeung K, Palladino M, Berenson J, Bonavida B. Pivotal roles of snail inhibition and RKIP induction by the proteasome inhibitor NPI-0052 in tumor cell chemoimmunosensitization. Cancer Res. 2009;69:8376–85.

    Article  CAS  PubMed  Google Scholar 

  19. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA, et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 2016;40:244–52.

    PubMed  Google Scholar 

  20. Rennefahrt UE, Deacon SW, Parker SA, Devarajan K, Beeser A, Chernoff J, et al. Specificity profiling of Pak kinases allows identification of novel phosphorylation sites. J Biol Chem. 2007;282:15667–78.

    Article  CAS  PubMed  Google Scholar 

  21. Naber HP, Drabsch Y, Snaar-Jagalska BE, ten Dijke P, van Laar T. Snail and Slug, key regulators of TGF-beta-induced EMT, are sufficient for the induction of single-cell invasion. Biochem Biophys Res Commun. 2013;435:58–63.

    Article  CAS  PubMed  Google Scholar 

  22. Nieto MA, Sargent MG, Wilkinson DG, Cooke J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science. 1994;264:835–9.

    Article  CAS  Google Scholar 

  23. Martinez-Estrada OM, Culleres A, Soriano FX, Peinado H, Bolos V, Martinez FO, et al. The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J. 2006;394:449–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kao SH, Wang WL, Chen CY, Chang YL, Wu YY, Wang YT, et al. GSK3beta controls epithelial−mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene. 2014;33:3172–82.

    Article  CAS  PubMed  Google Scholar 

  25. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol. 2009;11:694–704.

    Article  CAS  PubMed  Google Scholar 

  26. Wu ZQ, Li XY, Hu CY, Ford M, Kleer CG, Weiss SJ. Canonical Wnt signaling regulates Slug activity and links epithelial−mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc Natl Acad Sci USA. 2012;109:16654–9.

    Article  CAS  PubMed  Google Scholar 

  27. Katsuno Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial−mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25:76–84.

    Article  CAS  PubMed  Google Scholar 

  28. Saitoh M, Endo K, Furuya S, Minami M, Fukasawa A, Imamura T, et al. STAT3 integrates cooperative Ras and TGF-beta signals that induce Snail expression. Oncogene. 2016;35:1049–57.

    Article  CAS  PubMed  Google Scholar 

  29. Risolino M, Mandia N, Iavarone F, Dardaei L, Longobardi E, Fernandez S, et al. Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-beta-SMAD3 pathway in non-small cell lung adenocarcinoma. Proc Natl Acad Sci USA. 2014;111:E3775–3784.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar R, Li DQ. PAKs in human cancer progression: from inception to cancer therapeutic to future oncobiology. Adv Cancer Res. 2016;130:137–209.

    Article  CAS  PubMed  Google Scholar 

  31. Shih JY, Tsai MF, Chang TH, Chang YL, Yuan A, Yu CJ, et al. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2005;11:8070–8.

    Article  CAS  Google Scholar 

  32. Yang HW, Menon LG, Black PM, Carroll RS, Johnson MD. SNAI2/Slug promotes growth and invasion in human gliomas. BMC Cancer. 2010;10:301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Elloul S, Elstrand MB, Nesland JM, Trope CG, Kvalheim G, Goldberg I, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631–43.

    Article  CAS  PubMed  Google Scholar 

  34. Kurrey NK, K A, Bapat SA. Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol. 2005;97:155–65.

    Article  CAS  PubMed  Google Scholar 

  35. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 2009;27:2059–68.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang K, Chen D, Jiao X, Zhang S, Liu X, Cao J, et al. Slug enhances invasion ability of pancreatic cancer cells through upregulation of matrix metalloproteinase-9 and actin cytoskeleton remodeling. Lab Investig; a J Tech Methods Pathol. 2011;91:426–38.

    Article  CAS  Google Scholar 

  37. Esposito S, Russo MV, Airoldi I, Tupone MG, Sorrentino C, Barbarito G, et al. SNAI2/Slug gene is silenced in prostate cancer and regulates neuroendocrine differentiation, metastasis-suppressor and pluripotency gene expression. Oncotarget. 2015;6:17121–34.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Molina-Ortiz P, Villarejo A, MacPherson M, Santos V, Montes A, Souchelnytskyi S, et al. Characterization of the SNAG and SLUG domains of Snail2 in the repression of E-cadherin and EMT induction: modulation by serine 4 phosphorylation. PLoS ONE. 2012;7:e36132.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kim JY, Kim YM, Yang CH, Cho SK, Lee JW, Cho M. Functional regulation of Slug/Snail2 is dependent on GSK-3beta-mediated phosphorylation. FEBS J. 2012;279:2929–39.

    Article  CAS  PubMed  Google Scholar 

  40. Virtakoivu R, Mai A, Mattila E, De Franceschi N, Imanishi SY, Corthals G, et al. Vimentin-ERK signaling uncouples Slug gene regulatory function. Cancer Res. 2015;75:2349–62.

    Article  CAS  PubMed  Google Scholar 

  41. Wu DW, Lee MC, Wang J, Chen CY, Cheng YW, Lee H. DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer. Oncogene. 2014;33:1515–26.

    Article  CAS  PubMed  Google Scholar 

  42. Hemavathy K, Guru SC, Harris J, Chen JD, Ip YT. Human Slug is a repressor that localizes to sites of active transcription. Mol Cell Biol. 2000;20:5087–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.

    Article  CAS  PubMed  Google Scholar 

  44. Yang H, Li G, Wu JJ, Wang L, Uhler M, Simeone DM. Protein kinase A modulates transforming growth factor-beta signaling through a direct interaction with Smad4 protein. J Biol Chem. 2013;288:8737–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Zhang L, Duan CJ, Binkley C, Li G, Uhler MD, Logsdon CD, et al. A transforming growth factor beta-induced Smad3/Smad4 complex directly activates protein kinase A. Mol Cell Biol. 2004;24:2169–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wang C, Li Y, Zhang H, Liu F, Cheng Z, Wang D, et al. Oncogenic PAK4 regulates Smad2/3 axis involving gastric tumorigenesis. Oncogene. 2014;33:3473–84.

    Article  CAS  PubMed  Google Scholar 

  47. Ko H, Kim HS, Kim NH, Lee SH, Kim KH, Hong SH, et al. Nuclear localization signals of the E-cadherin transcriptional repressor Snail. Cells Tissues Organs. 2007;185:66–72.

    Article  CAS  PubMed  Google Scholar 

  48. Mladinich M, Ruan D, Chan CH. Tackling cancer stem cells via inhibition of EMT transcription factors. Stem Cells Int. 2016;2016:5285892.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Tania M, Khan MA, Fu J. Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol: J Int Soc Oncodev Biol Med. 2014;35:7335–42.

    Article  CAS  Google Scholar 

  50. Kalikin LM, Schneider A, Thakur MA, Fridman Y, Griffin LB, Dunn RL, et al. In vivo visualization of metastatic prostate cancer and quantitation of disease progression in immunocompromised mice. Cancer Biol Ther. 2003;2:656–60.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2017R1A2B3005714 and 2015R1A2A2A04004251), International Science and Business Belt Program through the Ministry of Science, ICT (2017K000490), and Chungbuk National University grant (2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Young Shin or Eung-Gook Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JJ., Park, MH., Oh, E.H. et al. The p21-activated kinase 4-Slug transcription factor axis promotes epithelial−mesenchymal transition and worsens prognosis in prostate cancer. Oncogene 37, 5147–5159 (2018). https://doi.org/10.1038/s41388-018-0327-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0327-8

This article is cited by

Search

Quick links