Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Melanoma protective antitumor immunity activated by catalytic DNA

Abstract

Melanoma incidence is increasing worldwide, and although drugs such as BRAF/MEK small-molecule inhibitors and immune checkpoint antibodies improve patient outcomes, most patients ultimately fail these therapies and alternative treatment strategies are urgently needed. DNAzymes have recently undergone clinical trials with signs of efficacy and no serious adverse events attributable to the DNAzyme. Here we investigated c-Jun expression in human primary and metastatic melanoma. We also explored the role of T cell immunity in DNAzyme inhibition of primary melanoma growth and the prevention of growth in non-treated tumors after the cessation of treatment in a mouse model. c-Jun was expressed in 80% of melanoma cells in human primary melanomas (n = 17) and in 83% of metastatic melanoma cells (n = 38). In contrast, c-Jun was expressed in only 11% of melanocytes in benign nevi (n = 24). Dz13, a DNAzyme targeting c-Jun/AP-1, suppressed both Dz13-injected and untreated B16F10 melanoma growth in the same mice, an abscopal effect relieved in each case by administration of anti-CD4/anti-CD8 antibodies. Dz13 increased levels of cleaved caspase-3 within the tumors. New, untreated melanomas grew poorly in mice previously treated with Dz13. Administration of anti-CD4/anti-CD8 antibodies ablated this inhibitory effect and the tumors grew rapidly. Dz13 inhibited c-Jun expression, reduced intratumoral vascularity (vascular lumina area defined by CD31 staining), and increased CD4+ cells within the tumors. This study provides the first demonstration of an abscopal effect of a DNAzyme on tumor growth and shows that Dz13 treatment prevents growth of subsequent new tumors in the same animal. Dz13 may be useful clinically as a therapeutic antitumor agent by preventing tumor relapse through adaptive immunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Apalla Z, Lallas A, Sotiriou E, Lazaridou E, Ioannides D. Epidemiological trends in skin cancer. Dermatol Pract Concept. 2017;7:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Melanoma-Institute-Australia. Melanoma facts and statistics. 2015. http://www.melanoma.org.au/understanding-melanoma/melanoma-facts-and-statistics/.

  3. Barth A, Wanek LA, Morton DL. Prognostic factors in 1,521 melanoma patients with distant metastases. J Am Coll Surg. 1995;181:193–201.

    PubMed  CAS  Google Scholar 

  4. Korn EL, Liu PY, Lee SJ, Chapman JA, Niedzwiecki D, Suman VJ, et al. Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol. 2008;26:527–34.

    Article  PubMed  Google Scholar 

  5. Johnson DB, Sosman JA. Therapeutic advances and treatment options in metastatic melanoma. JAMA Oncol. 2015;1:380–6.

    Article  PubMed  Google Scholar 

  6. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  PubMed  CAS  Google Scholar 

  7. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14:463–82.

    Article  PubMed  CAS  Google Scholar 

  8. Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene. 2001;20:2390–2400.

    Article  PubMed  CAS  Google Scholar 

  9. Ramsdale R, Jorissen RN, Li FZ, Al-Obaidi S, Ward T, Sheppard KE, et al. The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Sci Signal. 2015;8:ra82.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang G, Dass CR, Sumithran E, Di Girolimo NR, Sun L-Q, Khachigian LM. Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents. J Natl Cancer Inst. 2004;96:683–96.

    Article  PubMed  CAS  Google Scholar 

  11. Kappelmann M, Bosserhoff A, Kuphal S. AP-1/c-Jun transcription factors: regulation and function in malignant melanoma. Eur J Cell Biol. 2014;93:76–81.

    Article  PubMed  CAS  Google Scholar 

  12. Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA. 1997;94:4262–6.

    Article  PubMed  CAS  Google Scholar 

  13. Khachigian LM, Fahmy RG, Zhang G, Bobryshev YV, Kaniaros A. c-Jun regulates vascular smooth muscle cell growth and neointima formation after arterial injury: inhibition by a novel DNAzyme targeting c-Jun. J Biol Chem. 2002;277:22985–91.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang G, Luo X, Sumithran E, Pua VSC, Barnetson RS, Halliday GM, et al. Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and -9 expression. Oncogene. 2006;25:7260–6.

    Article  PubMed  CAS  Google Scholar 

  15. Tan ML, Choong PF, Dass CR. Direct anti-metastatic efficacy by the DNA enzyme Dz13 and downregulated MMP-2, MMP-9 and MT1-MMP in tumours. Cancer Cell Int. 2010;10:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cai H, Santiago FS, Prado-Lourenco L, Patrikakis M, Wang B, Chong BH, et al. DNAzymes targeting c-jun suppress skin cancer growth. Sci Transl Med. 2012;4:139ra182.

    Article  CAS  Google Scholar 

  17. Cho EA, Moloney FJ, Cai H, Au-Yeung A, China C, Scolyer RA, et al. Safety and tolerability of an intratumorally injected DNAzyme, Dz13, in patients with nodular basal-cell carcinoma: a phase 1 first-in-human trial (DISCOVER). Lancet. 2013;381:1835–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cao Y, Yang L, Jiang W, Wang X, Liao W, Tan G, et al. Therapeutic evaluation of Epstein-Barr virus-encoded latent membrane protein-1 targeted DNAzyme for treating of nasopharyngeal carcinomas. Mol Ther. 2014;22:371–7.

    Article  PubMed  CAS  Google Scholar 

  19. Krug N, Hohlfeld JM, Kirsten AM, Kornmann O, Beeh KM, Kappeler D, et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N Engl J Med. 2015;372:1987–95.

    Article  PubMed  Google Scholar 

  20. Kahan-Hanum M, Douek Y, Adar R, Shapiro E. A library of programmable DNAzymes that operate in a cellular environment. Sci Rep. 2013;3:1535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hoefer F, Marquardt K, Schmidts T, Domann E, Runkel F. HPLC based single-step kinetic assay to screen the activity of DNAzymes. Anal Methods. 2017;9:697–704.

    Article  CAS  Google Scholar 

  22. Hooijkaas A, Gadiot J, Morrow M, Stewart R, Schumacher T, Blank CU. Selective BRAF inhibition decreases tumor-resident lymphocyte frequencies in a mouse model of human melanoma. Oncoimmunology. 2012;1:609–17.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J, et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012;72:1081–91.

    Article  PubMed  CAS  Google Scholar 

  24. Fidler IJ. Selection of highly aggressive tumour lines for metastasis. Nat New Biol. 1973;242:148–9.

    Article  PubMed  CAS  Google Scholar 

  25. Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther. 2005;4:139–63.

    Article  PubMed  CAS  Google Scholar 

  26. Perales MA, Wolchok JD. CD4 help and tumor immunity: beyond the activation of cytotoxic T lymphocytes. Ann Surg Oncol. 2004;11:881–2.

    Article  PubMed  Google Scholar 

  27. Zanetti M. Tapping CD4 T cells for cancer immunotherapy: the choice of personalized genomics. J Immunol. 2015;194:2049–56.

    Article  PubMed  CAS  Google Scholar 

  28. Shklovskaya E, Terry AM, Guy TV, Buckley A, Bolton HA, Zhu E, et al. Tumour-specific CD4 T cells eradicate melanoma via indirect recognition of tumour-derived antigen. Immunol Cell Biol. 2016;94:593–603.

    Article  PubMed  CAS  Google Scholar 

  29. Nedergaard BS, Ladekarl M, Thomsen HF, Nyengaard JR, Nielsen K. Low density of CD3+, CD4+and CD8+cells is associated with increased risk of relapse in squamous cell cervical cancer. Br J Cancer. 2007;97:1135–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Beatty GL, Winograd R, Evans RA, Long KB, Luque SL, Lee JW, et al. Exclusion of T cells from pancreatic carcinomas in mice is regulated by Ly6C(low) F4/80(+) extratumoral macrophages. Gastroenterology. 2015;149:201–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bhindi R, Fahmy RG, Lowe HC, Chesterman CN, Dass CR, Cairns MJ, et al. Brothers in arms: DNA enzymes, short interfering RNA, and the emerging wave of small-molecule nucleic acid-based gene-silencing strategies. Am J Pathol. 2007;171:1079–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Khachigian LM. Catalytic DNAs as potential therapeutic agents and sequence-specific molecular tools to dissect biological function. J Clin Invest. 2000;106:1189–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li Y, Bhindi R, Deng ZJ, Morton SW, Hammond PT, Khachigian LM. Inhibition of vein graft stenosis with a c-jun targeting DNAzyme in a cationic liposomal formulation containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Int J Cardiol. 2013;168:3659–64.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang Z, Zhang S, Wang S. DNAzymes Dz13 target the c-jun possess antiviral activity against influenza A viruses. Microb Pathog. 2017;103:155–61.

    Article  PubMed  CAS  Google Scholar 

  35. Xie J, Zhang S, Hu Y, Li D, Cui J, Xue J, et al. Regulatory roles of c-jun in H5N1 influenza virus replication and host inflammation. Biochim Biophys Acta. 2014;1842:2479–88.

    Article  PubMed  CAS  Google Scholar 

  36. Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lardone RD, Plaisier SB, Navarrete MS, Shamonki JM, Jalas JR, Sieling PA, et al. Cross-platform comparison of independent datasets identifies an immune signature associated with improved survival in metastatic melanoma. Oncotarget. 2016;7:14415–28.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Madore J, Strbenac D, Vilain R, Menzies AM, Yang JY, Thompson JF, et al. PD-L1 negative status is associated with lower mutation burden, differential expression of immune-related genes, and worse survival in stage III melanoma. Clin Cancer Res. 2016;22:3915–23.

    Article  PubMed  CAS  Google Scholar 

  39. Mann GJ, Pupo GM, Campain AE, Carter CD, Schramm SJ, Pianova S, et al. BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome in patients with stage III melanoma. J Invest Dermatol. 2013;133:509–17.

    Article  PubMed  CAS  Google Scholar 

  40. Yan S, Holderness BM, Li Z, Seidel GD, Gui J, Fisher JL, et al. Epithelial-mesenchymal expression phenotype of primary melanoma and matched metastases and relationship with overall survival. Anticancer Res. 2016;36:6449–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liu H, Shen ZB, Wang ZL, Wang XF, Zhang H, Qin J, et al. Increased expression of IDO associates with poor postoperative clinical outcome of patients with gastric adenocarcinoma. Sci Rep. 2016;6:21319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kakavand H, Vilain RE, Wilmott JS, Burke H, Yearley JH, Thompson JF, et al. Tumor PD-L1 expression, immune cell correlates and PD-1+lymphocytes in sentinel lymph node melanoma metastases. Mod Pathol. 2015;28:1535–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Mark J Smyth (Peter MacCallum Cancer Centre, Melbourne) for supply of antibodies, the Biomedical Imaging Facility, UNSW Mark Wainwright Analytical Centre for immunohistochemical staining, and Emeritus Professor Ian Dawes for critical review of the manuscript.

Funding

This study was supported by a Translational Program Grant from Cancer Institute of New South Wales, and Program and Fellowship support from National Health and Medical Research Council of Australia.

Author contributions

LMK designed, directed, and analyzed all aspects of this research; RAS and GMH directed and analyzed various elements in the study; CRP and BHC provided critical intellectual input; HC, E-AC, YL, JS, JE, TJD, PMF, and JSW performed the work and/or analyzed the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levon M. Khachigian.

Ethics declarations

Conflict of interest

LMK has declared I.P. interests in Dz13. The remaining authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Cho, EA., Li, Y. et al. Melanoma protective antitumor immunity activated by catalytic DNA. Oncogene 37, 5115–5126 (2018). https://doi.org/10.1038/s41388-018-0306-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0306-0

This article is cited by

Search

Quick links