Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A novel three-dimensional high-throughput screening approach identifies inducers of a mutant KRAS selective lethal phenotype

Abstract

The RAS proteins are the most frequently mutated oncogenes in cancer, with highest frequency found in pancreatic, lung, and colon tumors. Moreover, the activity of RAS is required for the proliferation and/or survival of these tumor cells and thus represents a high-value target for therapeutic development. Direct targeting of RAS has proven challenging for multiple reasons stemming from the biology of the protein, the complexity of downstream effector pathways and upstream regulatory networks. Thus, significant efforts have been directed at identifying downstream targets on which RAS is dependent. These efforts have proven challenging, in part due to confounding factors such as reliance on two-dimensional adherent monolayer cell cultures that inadequately recapitulate the physiologic context to which cells are exposed in vivo. To overcome these issues, we implemented a high-throughput screening (HTS) approach using a spheroid-based 3-dimensional culture format, thought to more closely reflect conditions experienced by cells in vivo. Using isogenic cell pairs, differing in the status of KRAS, we identified Proscillaridin A as a selective inhibitor of cells harboring the oncogenic KRasG12V allele. Significantly, the identification of Proscillaridin A was facilitated by the 3D screening platform and would not have been discovered employing standard 2D culturing methods.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11:761–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. 2.

    Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22.

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012;72:2457–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Gysin S, Salt M, Young A, McCormick F. Therapeutic strategies for targeting ras proteins. Genes Cancer. 2011;2:359–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. 5.

    Singh A, Settleman J. Oncogenic K-ras “addiction” and synthetic lethality. Cell Cycle. 2009;8:2676–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Chan DA, Giaccia AJ. Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov. 2011;10:351–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 2009;137:821–34.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137:835–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Vicent S, Chen R, Sayles LC, Lin C, Walker RG, Gillespie AK, et al. Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J Clin Invest. 2010;120:3940–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Wang Y, Ngo VN, Marani M, Yang Y, Wright G, Staudt LM, et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene. 2010;29:4658–70.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Babij C, Zhang Y, Kurzeja RJ, Munzli A, Shehabeldin A, Fernando M, et al. STK33 kinase activity is nonessential in KRAS-dependent cancer cells. Cancer Res. 2011;71:5818–26.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Luo T, Masson K, Jaffe JD, Silkworth W, Ross NT, Scherer CA, et al. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability. Proc Natl Acad Sci USA. 2012;109:2860–5.

    Article  PubMed  Google Scholar 

  14. 14.

    Weiwer M, Spoonamore J, Wei J, Guichard B, Ross NT, Masson K, et al. A potent and selective quinoxalinone-based STK33 inhibitor does not show synthetic lethality in KRAS-dependent cells. ACS Med Chem Lett. 2012;3:1034–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Bittker JA, Weiwer M, Lewis T, Shimada K, Yang WS, MacPherson L, et al. Screen for RAS-selective lethal compounds and VDAC ligands—Probe 2. 2010, https://www.ncbi.nlm.nih.gov/pubmed/22834036.

  16. 16.

    Bittker JA, Weiwer M, Shimada K, Yang WS, MacPherson L, Dandapani S, et al. Screen for RAS-selective lethal compounds and VDAC ligands—Probe 1. 2010, https://www.ncbi.nlm.nih.gov/books/NBK55069/.

  17. 17.

    Torrance CJ, Agrawal V, Vogelstein B, Kinzler KW. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat Biotechnol. 2001;19:940–5.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Guo W, Wu S, Liu J, Fang B. Identification of a small molecule with synthetic lethality for K-ras and protein kinase C iota. Cancer Res. 2008;68:7403–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Shaw AT, Winslow MM, Magendantz M, Ouyang C, Dowdle J, Subramanian A, et al. Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc Natl Acad Sci USA. 2011;108:8773–8.

    Article  PubMed  Google Scholar 

  20. 20.

    Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013;31:108–15.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294:1708–12.

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8:839–45.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci. 2015;16:5517–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016;6:19103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130:601–10.

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Powell K. Adding depth to cell culture. Science . 2017;356:96–8.

    Article  Google Scholar 

  27. 27.

    Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97.

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Madoux F, Tanner A, Vessels M, Willetts L, Hou S, Scampavia L, et al. A 1536-well 3D viability assay to assess the cytotoxic effect of drugs on spheroids. SLAS Discov. 2017;22:516–24.

    PubMed  CAS  Google Scholar 

  29. 29.

    Zhang J-H, Chung TDY, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4:67–73.

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Longati P, Jia X, Eimer J, Wagman A, Witt M-R, Rehnmark S, et al. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer. 2013;13:95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Verjans ET, Doijen J, Luyten W, Landuyt B, Schoofs L. Three-dimensional cell culture models for anticancer drug screening: worth the effort? J Cell Physiol. 2017;233:2993–3003.

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011;136:473–8.

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Ramaiahgari SC, den Braver MW, Herpers B, Terpstra V, Commandeur JN, van de Water B, et al. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol. 2014;88:1083–95.

    PubMed  CAS  Google Scholar 

  34. 34.

    Lingrel JB, Kuntzweiler T. Na +, K(+)-ATPase. J Biol Chem. 1994;269:19659–62.

    PubMed  CAS  Google Scholar 

  35. 35.

    Alevizopoulos K, Calogeropoulou T, Lang F, Stournaras C. Na +/K + ATPase inhibitors in cancer. Curr Drug Targets. 2014;15:988–1000.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Delebinski CI, Georgi S, Kleinsimon S, Twardziok M, Kopp B, Melzig MF, et al. Analysis of proliferation and apoptotic induction by 20 steroid glycosides in 143B osteosarcoma cells in vitro. Cell Prolif. 2015;48:600–10.

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Denicolai E, Baeza-Kallee N, Tchoghandjian A, Carre M, Colin C, Jiglaire CJ, et al. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo. Oncotarget . 2014;5:10934–48.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Felth J, Rickardson L, Rosen J, Wickstrom M, Fryknas M, Lindskog M, et al. Cytotoxic effects of cardiac glycosides in colon cancer cells, alone and in combination with standard chemotherapeutic drugs. J Nat Prod. 2009;72:1969–74.

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Kim N, Yim HY, He N, Lee CJ, Kim JH, Choi JS, et al. Cardiac glycosides display selective efficacy for STK11 mutant lung cancer. Sci Rep. 2016;6:29721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Foster SA, Whalen DM, Ozen A, Wongchenko MJ, Yin J, Yen I, et al. Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2. Cancer Cell. 2016;29:477–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Pierre Baillargeon and Lina Deluca at Scripps for their help with compound management. This work was supported in part by the National Cancer Institute of the National Institutes of Health under Award Number R33CA206949 (TPS) and CA124495 (JK).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Joseph Kissil or Timothy P. Spicer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Smitha Kota, Shurong Hou, William Guerrant.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kota, S., Hou, S., Guerrant, W. et al. A novel three-dimensional high-throughput screening approach identifies inducers of a mutant KRAS selective lethal phenotype. Oncogene 37, 4372–4384 (2018). https://doi.org/10.1038/s41388-018-0257-5

Download citation

Further reading

Search

Quick links