Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The miR-106b-25 cluster mediates breast tumor initiation through activation of NOTCH1 via direct repression of NEDD4L

Abstract

Tumor-initiating cells (TIC) represent a subset of tumor cells with increased self-renewal capability. TICs display resistance to frontline cancer treatment and retain the ability to repopulate a tumor after therapy, leading to cancer relapse. NOTCH signaling has been identified as an important driver of the TIC population, yet mechanisms governing regulation of this pathway in cancer remain to be fully elucidated. Here we identify a novel mechanism of NOTCH regulation and TIC induction in breast cancer via the miR-106b-25 miRNA cluster. We show that the miR-106b-25 cluster upregulates NOTCH1 in multiple breast cancer cell lines, representing both estrogen receptor (ER+) and triple negative breast cancer (TNBC) through direct repression of the E3 ubiquitin ligase, NEDD4L. We further show that upregulation of NOTCH1 is necessary for TIC induction downstream of miR-106b-25 in both ER + and TNBC breast cancer cells, and that re-expression of NEDD4L is sufficient to reverse miR106b-25-mediated NOTCH1 upregulation and TIC induction. Importantly, we demonstrate a significant positive correlation between miR-106b-25 and NOTCH1 protein, yet a significant inverse correlation between miR-106b-25 and NEDD4L mRNA in human breast cancer, suggesting a critical role for the miR106b-25/NEDD4L/NOTCH1 axis in the disease. Further, we show for the first time that NEDD4L expression alone is significantly associated with a better relapse-free prognosis for breast cancer patients. These data expand our knowledge of the mechanisms underlying NOTCH activation and TIC induction in breast cancer, and may provide new avenues for the development of therapies targeting this resistant subset of tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci Usa. 2003;100:3983–8.

    Article  CAS  Google Scholar 

  2. Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–22.

    Article  CAS  Google Scholar 

  3. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  Google Scholar 

  4. Brooks MD, Burness ML, Wicha MS. Therapeutic implications of cellular heterogeneity and plasticity in breast cancer. Cell Stem Cell. 2015;17:260–71.

    Article  CAS  Google Scholar 

  5. Yang F, Xu J, Tang L, Guan X. Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci. 2016;74:951–66.

  6. Pires BR, DEA IS, Souza, Rodrigues LD, Mencalha JA, Targeting AL. Cellular signaling pathways in breast cancer stem cells and its implication for cancer treatment. Anticancer Res. 2016;36:5681–91.

    Article  CAS  Google Scholar 

  7. Pursglove SE, Mackay JP. CSL: a notch above the rest. Int J Biochem Cell Biol. 2005;37:2472–7.

    Article  CAS  Google Scholar 

  8. Capaccione KM, Pine SR. The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis. 2013;34:1420–30.

    Article  CAS  Google Scholar 

  9. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell . 1991;66:649–61.

    Article  CAS  Google Scholar 

  10. Espinoza I, Miele L. Notch inhibitors for cancer treatment. Pharmacol Ther. 2013;139:95–110.

    Article  CAS  Google Scholar 

  11. Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol. 2006;168:973–90.

    Article  CAS  Google Scholar 

  12. Ntziachristos P, Lim JS, Sage J, Aifantis I. From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell. 2014;25:318–34.

    Article  CAS  Google Scholar 

  13. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272–86.

    Article  CAS  Google Scholar 

  14. Li Y, Tan W, Neo TW, Aung MO, Wasser S, Lim SG, et al. Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci. 2009;100:1234–42.

    Article  CAS  Google Scholar 

  15. Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y, et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology. 2009;136:1689–700.

    Article  CAS  Google Scholar 

  16. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, et al. Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal. 2010;3:ra29.

    Article  Google Scholar 

  17. Lo Sardo F, Forcato M, Sacconi A, Capaci V, Zanconato F, Di Agostino S, et al. MCM7 and its hosted miR-25, 93 and 106b cluster elicit YAP/TAZ oncogenic activity in lung cancer. Carcinogenesis. 2017;38:64–75.

    Article  CAS  Google Scholar 

  18. Zhang R, Li F, Wang W, Wang X, Li S, Liu J. The effect of antisense inhibitor of miRNA 106b approximately 25 on the proliferation, invasion, migration, and apoptosis of gastric cancer cell. Tumour Biol. 2016;37:10507–15.

    Article  CAS  Google Scholar 

  19. Choi N, Park J, Lee JS, Yoe J, Park GY, Kim E, et al. miR-93/miR-106b/miR-375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression. Oncotarget. 2015;6:23533–47.

    PubMed  PubMed Central  Google Scholar 

  20. Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, et al. The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene. 2012;31:5162–71.

    Article  CAS  Google Scholar 

  21. Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging. 2011;3:108–24.

    Article  CAS  Google Scholar 

  22. Yu D, Shin HS, Lee YS, Lee YC. miR-106b modulates cancer stem cell characteristics through TGF-beta/Smad signaling in CD44-positive gastric cancer cells. Lab Invest. 2014;94:1370–81.

    Article  CAS  Google Scholar 

  23. Qian S, Ding JY, Xie R, An JH, Ao XJ, Zhao ZG, et al. MicroRNA expression profile of bronchioalveolar stem cells from mouse lung. Biochem Biophys Res Commun. 2008;377:668–73.

    Article  CAS  Google Scholar 

  24. Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, et al. MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet. 2012;8:e1002751.

    Article  CAS  Google Scholar 

  25. Wang Z, Li Y, Banerjee S, Sarkar FH. Emerging role of Notch in stem cells and cancer. Cancer Lett. 2009;279:8–12.

    Article  CAS  Google Scholar 

  26. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell . 2009;137:216–33.

    Article  CAS  Google Scholar 

  27. Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C. A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 2002;3:688–94.

    Article  CAS  Google Scholar 

  28. Goel P, Manning JA, Kumar S. NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins. Gene. 2015;557:1–10.

    Article  CAS  Google Scholar 

  29. Chastagner P, Israel A, Brou C. AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS ONE. 2008;3:e2735.

    Article  Google Scholar 

  30. Sakata T, Sakaguchi H, Tsuda L, Higashitani A, Aigaki T, Matsuno K, et al. Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr Biol. 2004;14:2228–36.

    Article  CAS  Google Scholar 

  31. Schrijver WA, van Diest PJ. Dutch distant breast cancer metastases C, moelans CB. Unravelling site-specific breast cancer metastasis: a microRNA expression profiling study. Oncotarget. 2017;8:3111–23.

    PubMed  Google Scholar 

  32. Gravgaard KH, Lyng MB, Laenkholm AV, Sokilde R, Nielsen BS, Litman T, et al. The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer. Breast Cancer Res Treat. 2012;134:207–17.

    Article  CAS  Google Scholar 

  33. Shyamasundar S, Lim JP, Bay BH. miR-93 inhibits the invasive potential of triple-negative breast cancer cells in vitro via protein kinase WNK1. Int J Oncol. 2016;49:2629–36.

    Article  CAS  Google Scholar 

  34. Liu Y, Zhang J, Sun X, Li M. EMMPRIN down-regulating miR-106a/b modifies breast cancer stem-like cell properties via interaction with fibroblasts through STAT3 and HIF-1alpha. Sci Rep. 2016;6:28329.

    Article  CAS  Google Scholar 

  35. Ni X, Xia T, Zhao Y, Zhou W, Wu N, Liu X, et al. Downregulation of miR-106b induced breast cancer cell invasion and motility in association with overexpression of matrix metalloproteinase 2. Cancer Sci. 2014;105:18–25.

    Article  CAS  Google Scholar 

  36. Xu X, Liu Z, Wang J, Ling Q, Xie H, Guo H, et al. miRNA profiles in livers with different mass deficits after partial hepatectomy and miR-106b~25 cluster accelerating hepatocyte proliferation in rats. Sci Rep. 2016;6:31267.

    Article  CAS  Google Scholar 

  37. Yen CS, Su ZR, Lee YP, Liu IT, Yen CJ. miR-106b promotes cancer progression in hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol. 2016;22:5183–92.

    Article  CAS  Google Scholar 

  38. Chen S, Chen X, Sun KX, Xiu YL, Liu BL, Feng MX, et al. MicroRNA-93 Promotes Epithelial-Mesenchymal Transition of Endometrial Carcinoma Cells. PLoS ONE. 2016;11:e0165776.

    Article  Google Scholar 

  39. Li C, Ding C, Chen T, Chen J, Xu Z, Lei Z, et al. Micro ribonucleic acid-93 promotes proliferation and migration of esophageal squamous cell carcinoma by targeting disabled 2. Thorac Cancer. 2015;6:524–33.

    Article  CAS  Google Scholar 

  40. Espinoza I, Miele L. Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells. Cancer Lett. 2013;341:41–5.

    Article  CAS  Google Scholar 

  41. Koch U, Lehal R, Radtke F. Stem cells living with a Notch. Development. 2013;140:689–704.

    Article  CAS  Google Scholar 

  42. Sansone P, Storci G, Giovannini C, Pandolfi S, Pianetti S, Taffurelli M, et al. p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells. 2007;25:807–15.

    Article  CAS  Google Scholar 

  43. Qu MH, Han C, Srivastava AK, Cui T, Zou N, Gao ZQ, et al. miR-93 promotes TGF-beta-induced epithelial-to-mesenchymal transition through downregulation of NEDD4L in lung cancer cells. Tumour Biol. 2016;37:5645–51.

    Article  CAS  Google Scholar 

  44. Mazaleyrat SL, Fostier M, Wilkin MB, Aslam H, Evans DA, Cornell M, et al. Down-regulation of Notch target gene expression by Suppressor of deltex. Dev Biol. 2003;255:363–72.

    Article  CAS  Google Scholar 

  45. Yau WL, Lam CS, Ng L, Chow AK, Chan ST, Chan JY, et al. Over-expression of miR-106b promotes cell migration and metastasis in hepatocellular carcinoma by activating epithelial-mesenchymal transition process. PLoS ONE. 2013;8:e57882.

    Article  CAS  Google Scholar 

  46. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  Google Scholar 

  47. Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta. 2011;1815:197–213.

    CAS  PubMed  Google Scholar 

  48. Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009;19:71–88.

    Article  CAS  Google Scholar 

  49. Kolch W, Halasz M, Granovskaya M, Kholodenko BN. The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer. 2015;15:515–27.

    Article  CAS  Google Scholar 

  50. Gong C, Qu S, Liu B, Pan S, Jiao Y, Nie Y, et al. MiR-106b expression determines the proliferation paradox of TGF-beta in breast cancer cells. Oncogene. 2015;34:84–93.

    Article  CAS  Google Scholar 

  51. Gao S, Alarcon C, Sapkota G, Rahman S, Chen PY, Goerner N, et al. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell. 2009;36:457–68.

    Article  CAS  Google Scholar 

  52. Micalizzi DS, Christensen KL, Jedlicka P, Coletta RD, Baron AE, Harrell JC, et al. The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling. J Clin Invest. 2009;119:2678–90.

    Article  CAS  Google Scholar 

  53. Farabaugh SM, Micalizzi DS, Jedlicka P, Zhao R, Ford HL. Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-beta signaling, epithelial-mesenchymal transition, and cancer stem cell properties. Oncogene. 2012;31:552–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Paul Jedlicka for the generous gift of mice for limiting dilution experiments. We also want to thank the University of Colorado Cancer center flow cytometry shared resource for performing flow cytometry experiments needed for this work (P30CA046934), the Functional Genomics Facility for shRNA constructs, and The Cancer Genome Atlas (TCGA) for use of their breast cancer patient data set. This work was supported by R01CA095277 (HLF), R01CA117907 (JME), the METAvivor Foundation (HLF), the Department of Defense Breast Cancer Research Program W81XWH-10-1-0296 (ALG), the Ruth L. Kirschstein National Service Research Award (F32) 1F32CA199716-01 (ALG), the Ruth L. Kirschstein National Service Research Award (F31) 5F31CA210622-02 (MUJO), the NCI fellow transition award F99 CA223023 (MUJO), UC Denver AMC Molecular Biology Program T32 training grant T32 GM008730 (CGT), NIH-RO1 Diversity Supplement to R01-CA157790 (CGT), the UNCF/MERCK Graduate Fellowship (CGT), and the T32 Cancer Biology training grant CA190216-1 A1 (CGT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Ford.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guarnieri, A.L., Towers, C.G., Drasin, D.J. et al. The miR-106b-25 cluster mediates breast tumor initiation through activation of NOTCH1 via direct repression of NEDD4L. Oncogene 37, 3879–3893 (2018). https://doi.org/10.1038/s41388-018-0239-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0239-7

This article is cited by

Search

Quick links