Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

JNK and Yorkie drive tumor progression by generating polyploid giant cells in Drosophila

Abstract

Epithelial cancer tissues often possess polyploid giant cells, which are thought to be highly oncogenic. However, the mechanisms by which polyploid giant cells are generated in tumor tissues and how such cells contribute to tumor progression remain elusive. We previously noticed in Drosophila imaginal epithelium that cells mutant for the endocytic gene rab5 exhibit enlarged nuclei. Here we find that mutations in endocytic ‘neoplastic tumor-suppressor’ genes, such as rab5, vps25, erupted, or avalanche result in generation of polyploid giant cells. Genetic analyses on rab5-defective cells reveal that cooperative activation of JNK and Yorkie generates polyploid giant cells via endoreplication. Mechanistically, Yorkie-mediated upregulation of Diap1 cooperates with JNK to downregulate the G2/M cyclin CycB, thereby inducing endoreplication. Interestingly, malignant tumors induced by Ras activation and cell polarity defect also consist of polyploid giant cells, which are generated by JNK and Yorkie-mediated downregulation of CycB. Strikingly, elimination of polyploid giant cells from such malignant tumors by blocking endoreplication strongly suppressed tumor growth and metastatic behavior. Our observations suggest that JNK and Yorkie, two oncogenic proteins activated in many types of human cancers, cooperatively drive tumor progression by generating oncogenic polyploid giant cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davoli T, Lange TD. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Biol. 2011;27:585–610.

    Article  CAS  Google Scholar 

  2. Fox DT, Duronio RJ. Endoreplication and polyploidy: insights into development and disease. Development. 2013;140:3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33:116–28.

    Article  CAS  PubMed  Google Scholar 

  4. Hariharan IK, Bilder D. Regulation of imaginal disc growth by tumor-suppressor genes in. Drosoph Annu Rev Genet. 2006;40:335–61.

    Article  CAS  Google Scholar 

  5. Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2:107–17.

    Article  CAS  PubMed  Google Scholar 

  6. Takino K, Ohsawa S, Igaki T. Loss of Rab5 drives non-autonomous cell proliferation through TNF and Ras signaling. Drosoph Dev Biol.2014;395:19–28.

    Article  CAS  Google Scholar 

  7. Uhlirova M, Bohmann D. JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J. 2006;25:5294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Herz HM, Chen Z, Scherr H, Lackey M, Bolduc C, Bergmann A. vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis. Development. 2006;133:1871–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robinson BS, Moberg KH. Drosophila endocytic neoplastic tumor suppressor genes regulate Sav/Wts/Hpo signaling and the c-Jun N-terminal kinase pathway. Cell Cycle. 2011;10:4110–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glise B, Bourhon H, Noselli S. Hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement. Cell. 1995;83:451–61.

    Article  CAS  PubMed  Google Scholar 

  11. Gutierrez GJ, Tsuji T, Cross JV, Davis RJ, Templeton DJ, Jiang W, et al. JNK-mediated phosphorylation of Cdc25C regulates cell cycle entry and G(2)/M DNA damage checkpoint. J Biol Chem. 2010;285:14217–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindqvist A. Cyclin B-Cdk1 activates its own pump to get into the nucleus. J Cell Biol. 2010;198:197–9.

    Article  CAS  Google Scholar 

  13. Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell. 2005;122:421–34.

    Article  CAS  PubMed  Google Scholar 

  14. Goyal L, McCall K, Agapite J, Hartwieg E, Steller H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 2000;19:589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brumby AM, Richardson HE. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 2003;22:5769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science. 2003;302:1227–31.

    Article  CAS  PubMed  Google Scholar 

  17. Igaki T, Pagliarini RA, Xu T. Loss of cell polarity drives tumor growth and invasion through JNK activation in. Drosoph Curr Biol. 2006;16:1139–46.

    Article  CAS  Google Scholar 

  18. Ohsawa S, Sato Y, Enomoto M, Nakamura M, Betsumiya A, Igaki T. Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature. 2012;490:547–51.

    Article  CAS  PubMed  Google Scholar 

  19. Doggett K, Grusche FA, Richardson HE, Brumby AM. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev Biol. 2011;11:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell. 2004;15:713–25.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura M, Ohsawa S, Igaki T. Mitochondrial defects trigger proliferation of neighbouring cells via a senescence-associated secretory phenotype in Drosophila. Nat Commun. 2014;5:5264.

    Article  CAS  PubMed  Google Scholar 

  22. Gong FR, Wu MY, Shen M, Zhi QM, Xu ZK, Wang R, et al. PP2A inhibitors arrest G2/M transition through JNK/Sp1-dependent down-regulation of CDK1 and autophagy-dependent up-regulation of p21. Oncotarget. 2015;6:18469–83.

    PubMed  PubMed Central  Google Scholar 

  23. Wang H, Zhang T, Sun W, Wang Z, Zuo D, Zhou Z, et al. Erianin induces G2/M-phase arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 2016;7:e2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shabbeer S, Omer D, Berneman D, Weitzman O, Alpaugh A, Pietraszkiewicz A, et al. BRCA1 targets G2/M cell cycle proteins for ubiquitination and proteasomal degradation. Oncogene. 2013;32:5005–16.

    Article  CAS  Google Scholar 

  25. Xu D, Woodfield SE, Lee TV, Fan Y, Antonio C, Bergmann A. Genetic control of programmed cell death (apoptosis) in Drosophila. Fly. 2009;3:78–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hershko A. Mechanisms and regulation of the degradation of cyclin B. Philos Trans R Soc Lond B Biol Sci. 1999;354:1571–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mohd-Sarip A, Lagarou A, Doyen CM, van der Knaap JA, Aslan Ü, Bezstarosti K, et al. Transcription-independent function of Polycomb group protein PSC in cell cycle control. Science. 2012;336:744–4.

    Article  CAS  PubMed  Google Scholar 

  28. Moberg KH, Schelble S, Burdick SK, Hariharan IK. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell. 2005;9:699–710.

    Article  CAS  PubMed  Google Scholar 

  29. Giebel B, Wodarz A. Tumor suppressors: control of signaling by endocytosis. Curr Biol. 2006;16:R91–2.

    Article  CAS  PubMed  Google Scholar 

  30. Frierson HF Jr.. Ploidy analysis and S-phase fraction determination by flow cytometry of invasive adenocarcinomas of the breast. Am J Surg Pathol. 1991;15:358–67.

    Article  PubMed  Google Scholar 

  31. Davidson B, Konstantinovsky S, Kleinberg L, Nquyen MT, Bassarova A, Kvalheim G, et al. The mitogen-activated protein kinases (MAPK) p38 and JNK are markers of tumor progression in breast carcinoma. Gynecol Oncol. 2006;102:453–61.

    Article  CAS  PubMed  Google Scholar 

  32. Maugeri-Saccà M, Barba M, Pizzuti L, Vici P, Di Lauro L, Dattilo R, et al. The Hippo transducers TAZ and YAP in breast cancer: oncogenic activities and clinical implications. Expert Rev Mol Med. 2015;17:e14.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, Chen Q, Liu Q, Li Y, Sun X, Hong L, et al. Hippo signaling suppresses cell ploidy and tumorigenesis through Skp2. Cancer Cell. 2017;31:669–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993;117:1223–37.

    CAS  PubMed  Google Scholar 

  35. Lee T, Luo L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron. 1999;22:451–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Masato Enomoto, Yukari Sando, Yuya Sanaki, Kiichiro Taniguchi, and Masatoshi Yamamoto for discussions, and K. Sawada, K. Baba and Y. Senda for technical assistance. We also thank Leonie Quinn, Masayuki Miura, Takashi Adachi-Yamada, the Bloomington Stock Center, the Drosophila Genomics and Genetic Resources (DGGR), and the FlyORF for fly stocks. This work was supported in part by grants from the MEXT/JSPS KAKENHI (Grant Number 26114002, 16K14606, 16H02505, 15H05862, 26711013, and 17H03673) to S.O. and T.I., the Naito Foundation to T.I., the Takeda Science Foundation to S.O. and T.I., the Japan Foundation for Applied Enzymology to S.O., and Japan Agency for Medical Research and Development (Project for Elucidating and Controlling Mechanisms of Aging and Longevity) to T.I. B.C. was supported in part by Ichikawa International Scholarship Foundation.

This work was supported in part by grants from the MEXT/JSPS KAKENHI (Grant Numbers 26114002, 16K14606, 16H02505, 15H05862, 26711013, and 17H03673), the Naito Foundation, the Takeda Science Foundation, the Japan Foundation for Applied Enzymology, and Japan Agency for Medical Research and Development (Project for Elucidating and Controlling Mechanisms of Aging and Longevity) to T.I. B.C. was supported in part by Ichikawa International Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsushi Igaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, B., Ohsawa, S. & Igaki, T. JNK and Yorkie drive tumor progression by generating polyploid giant cells in Drosophila. Oncogene 37, 3088–3097 (2018). https://doi.org/10.1038/s41388-018-0201-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0201-8

This article is cited by

Search

Quick links