Astrocyte-derived CCL20 reinforces HIF-1-mediated hypoxic responses in glioblastoma by stimulating the CCR6-NF-κB signaling pathway

Abstract

During tumor development, stromal cells are co-opted to the tumor milieu and provide favorable conditions for the tumor. Hypoxia stimulates cancer cells to acquire a more malignant phenotype via activation of hypoxia-inducible factor 1 (HIF-1). Given that cancer cells and astrocytes in glioblastomas coexist in a hypoxic microenvironment, we examined whether astrocytes affect the adaptation of glioblastoma cells to hypoxia. Immunoblotting, reporter assays, quantitative RT-PCR, and chromatin immunoprecipitation were performed to evaluate HIF-1 signaling in glioblastoma cells. Astrocyte-derived chemokine C–C motif ligand 20 (CCL20) was identified using cytokine arrays, and its role in glioblastoma development was evaluated in orthotopic xenografts. Astrocytes augmented HIF-1α expression in glioblastoma cells under hypoxia. The expression of HIF-1 downstream genes, cancer colony formation, and Matrigel invasion of glioblastoma cells were stimulated by conditioned medium from astrocytes pre-exposed to hypoxia. CCL20 was secreted in a hypoxia-dependent manner from astrocytes and busted the hypoxic induction of HIF-1α in glioblastoma cells. Mechanistically, the CCL20/CCR6 signaling pathway upregulates HIF-1α by stimulating nuclear factor kappa B-driven transactivation of the HIF1A gene. Compared with the control tumors, CCR6-deficient glioblastoma xenografts grew more slowly, with poor vascularization, and expressed lower levels of HIF-1α and its downstream proteins. Furthermore, CCR6 expression was correlated with HIF-1α expression in GEO and TCGA datasets from human glioblastoma tissues. These results suggest that glioblastoma cells adapt well to hypoxic stress by virtue of CCL20 derived from neighboring astrocytes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Olar A, Aldape KD. Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol. 2014;232:165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2012;60:502–14.

    Article  PubMed  Google Scholar 

  3. 3.

    Lorger M. Tumor microenvironment in the brain. Cancers. 2012;4:218–43.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist. 2004;9(Suppl 5):10–17.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12:9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev. 1998;8:588–94.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70:1469–80.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    O’Brien ER, Howarth C, Sibson NR. The role of astrocytes in CNS tumors: pre-clinical models and novel imaging approaches. Front Cell Neurosci. 2013;7:40.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Placone AL, Quinones-Hinojosa A, Searson PC. The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol. 2016;37:61–69.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Rath BH, Fair JM, Jamal M, Camphausen K, Tofilon PJ. Astrocytes enhance the invasion potential of glioblastoma stem-like cells. PLoS ONE. 2013;8:e54752.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lee YM, Lim JH, Yoon H, Chun YS, Park JW. Antihepatoma activity of chaetocin due to deregulated splicing of hypoxia-inducible factor 1alpha pre-mRNA in mice and in vitro. Hepatology. 2011;53:171–80.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Ayrapetov MK, Xu C, Sun Y, Zhu K, Parmar K, D’Andrea AD. Activation of Hif1alpha by the prolylhydroxylase inhibitor dimethyoxalyglycine decreases radiosensitivity. PLoS ONE. 2011;6:e26064.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gorlach A, Bonello S. The cross-talk between NF-kappaB and HIF-1: further evidence for a significant liaison. Biochem J. 2008;412:e17–e19.

    Article  PubMed  Google Scholar 

  14. 14.

    Zeng W, Chang H, Ma M, Li Y. CCL20/CCR6 promotes the invasion and migration of thyroid cancer cells via NF-kappa B signaling-induced MMP-3 production. Exp Mol Pathol. 2014;97:184–90.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Marsigliante S, Vetrugno C, Muscella A. CCL20 induces migration and proliferation on breast epithelial cells. J Cell Physiol. 2013;228:1873–83.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol. 2005;7:134–53.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Gagliano N, Costa F, Cossetti C, Pettinari L, Bassi R, Chiriva-Internati M. Glioma-astrocyte interaction modifies the astrocyte phenotype in a co-culture experimental model. Oncol Rep. 2009;22:1349–56.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D. Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol. 2005;15:297–310.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Yang L, Lin C, Wang L, Guo H, Wang X. Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res. 2012;318:2417–26.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Mendez O, Zavadil J, Esencay M, Lukyanov Y, Santovasi D, Wang SC. Knock down of HIF-1alpha in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Mol Cancer. 2010;9:133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Giannopoulou E, Ravazoula P, Kalofonos H, Makatsoris T, Kardamakis D. Expression of HIF-1alpha and iNOS in astrocytic gliomas: a clinicopathological study. Vivo. 2006;20:421–5.

    CAS  Google Scholar 

  22. 22.

    Korkolopoulou P, Patsouris E, Konstantinidou AE, Pavlopoulos PM, Kavantzas N, Boviatsis E. Hypoxia-inducible factor 1alpha/vascular endothelial growth factor axis in astrocytomas. Associations with microvessel morphometry, proliferation and prognosis. Neuropathol Appl Neurobiol. 2004;30:267–78.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Schutyser E, Struyf S, Van Damme J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 2003;14:409–26.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    McColl SR. Chemokines and dendritic cells: a crucial alliance. Immunol Cell Biol. 2002;80:489–96.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Ghadjar P, Rubie C, Aebersold DM, Keilholz U. The chemokine CCL20 and its receptor CCR6 in human malignancy with focus on colorectal cancer. Int J Cancer. 2009;125:741–5.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Ding X, Wang K, Wang H, Zhang G, Liu Y, Yang Q. High expression of CCL20 is associated with poor prognosis in patients with hepatocellular carcinoma after curative resection. J Gastrointest Surg. 2012;16:828–36.

    Article  PubMed  Google Scholar 

  27. 27.

    Wang L, Qin H, Li L, Zhang Y, Tu Y, Feng F. Overexpression of CCL20 and its receptor CCR6 predicts poor clinical prognosis in human gliomas. Med Oncol. 2012;29:3491–7.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107:7–11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Okamoto T, Sanda T, Asamitsu K. NF-kappa B signaling and carcinogenesis. Curr Pharm Des. 2007;13:447–62.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Ambrosini E, Columba-Cabezas S, Serafini B, Muscella A, Aloisi F. Astrocytes are the major intracerebral source of macrophage inflammatory protein-3alpha/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia. 2003;41:290–300.

    Article  PubMed  Google Scholar 

  31. 31.

    Li R, Xu W, Chen Y, Qiu W, Shu Y, Wu A. Raloxifene suppresses experimental autoimmune encephalomyelitis and NF-kappaB-dependent CCL20 expression in reactive astrocytes. PLoS ONE. 2014;9:e94320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Battaglia F, Delfino S, Merello E, Puppo M, Piva R, Varesio L. Hypoxia transcriptionally induces macrophage-inflammatory protein-3alpha/CCL-20 in primary human mononuclear phagocytes through nuclear factor (NF)-kappaB. J Leukoc Biol. 2008;83:648–62.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Toledo CM, Ding Y, Hoellerbauer P, Davis RJ, Basom R, Girard EJ. Genome-wide CRISPR-Cas9 screens reveal loss of redundancy between PKMYT1 and WEE1 in glioblastoma stem-like cells. Cell Rep. 2015;13:2425–39.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the National Research Foundation of Korea (2017048432) and a grant of Korea Health Technology R&D Project through the Korea Health Industry Development Institute (HI14C3418). Park JW was supported by the Education and Research Encouragement Fund of Seoul National University Hospital.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong-Wan Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, P., Shin, SH., Chun, YS. et al. Astrocyte-derived CCL20 reinforces HIF-1-mediated hypoxic responses in glioblastoma by stimulating the CCR6-NF-κB signaling pathway. Oncogene 37, 3070–3087 (2018). https://doi.org/10.1038/s41388-018-0182-7

Download citation

Further reading

Search