Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel bone morphogenetic protein receptor inhibitor JL5 suppresses tumor cell survival signaling and induces regression of human lung cancer

Abstract

BMP receptor inhibitors induce death of cancer cells through the downregulation of antiapoptotic proteins XIAP, pTAK1, and Id1-Id3. However, the current most potent BMP receptor inhibitor, DMH2, does not downregulate BMP signaling in vivo because of metabolic instability and poor pharmacokinetics. Here we identified the site of metabolic instability of DMH2 and designed a novel BMP receptor inhibitor, JL5. We show that JL5 has a greater volume of distribution and suppresses the expression of Id1 and pTak1 in tumor xenografts. Moreover, we demonstrate JL5-induced tumor cell death and tumor regression in xenograft mouse models without immune cells and humanized with adoptively transferred human immune cells. In humanized mice, JL5 additionally induces the infiltration of immune cells within the tumor microenvironment. Our studies show that the BMP signaling pathway is targetable in vivo and BMP receptor inhibitors can be developed as a therapeutic to treat cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sountoulidis A, Stavropoulos A, Giaglis S, Apostolou E, Monteiro R, Chuva de Sousa Lopes SM, et al. Activation of the canonical bone morphogenetic protein (BMP) pathway during lung morphogenesis and adult lung tissue repair. PLoS One. 2012;7:e41460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Weaver M, Yingling JM, Dunn NR, Bellusci S, Hogan BL. Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Development. 1999;126:4005–15.

    PubMed  CAS  Google Scholar 

  3. Langenfeld EM, Calvano SE, Abou-Nukta F, Lowry SF, Amenta P, Langenfeld J. The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells. Carcinogenesis. 2003;24:1445–54.

    Article  PubMed  CAS  Google Scholar 

  4. Langenfeld EM, Bojnowski J, Perone J, Langenfeld J. Expression of bone morphogenetic proteins in human lung carcinomas. Ann Thorac Surg. 2005;80:1028–32.

    Article  PubMed  Google Scholar 

  5. Lai TH, Fong YC, Fu WM, Yang RS, Tang CH. Osteoblasts-derived BMP-2 enhances the motility of prostate cancer cells via activation of integrins. Prostate. 2008;68:1341–53.

    Article  PubMed  CAS  Google Scholar 

  6. Clement JH, Raida M, Sanger J, Bicknell R, Liu J, Naumann A, et al. Bone morphogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone independent growth of breast carcinoma cells. Int J Oncol. 2005;27:401–7.

    PubMed  CAS  Google Scholar 

  7. Owens P, Pickup MW, Novitskiy SV, Giltnane JM, Gorska AE, Hopkins CR, et al. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene. 2015;34:2437–49.

    Article  PubMed  CAS  Google Scholar 

  8. Kleeff J, Maruyama H, Ishiwata T, Sawhney H, Friess H, Buchler MW, et al. Bone morphogenetic protein 2 exerts diverse effects on cell growth in vitro and is expressed in human pancreatic cancer in vivo. Gastroenterology. 1999;116:1202–16.

    Article  PubMed  CAS  Google Scholar 

  9. Rothhammer T, Poser I, Soncin F, Bataille F, Moser M, Bosserhoff AK. Bone morphogenic proteins are overexpressed in malignant melanoma and promote cell invasion and migration. Cancer Res. 2005;65:448–56.

    PubMed  CAS  Google Scholar 

  10. Nguyen A, Scott MA, Dry SM, James AW. Roles of bone morphogenetic protein signaling in osteosarcoma. Int Orthop. 2014;38:2313–22.

    Article  PubMed  Google Scholar 

  11. Langenfeld EM, Langenfeld J. Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors. Mol Cancer Res. 2004;2:141–9.

    PubMed  CAS  Google Scholar 

  12. Langenfeld EM, Kong Y, Langenfeld J. Bone morphogenetic protein 2 stimulation of tumor growth involves the activation of Smad-1/5. Oncogene. 2006;25:685–92.

    Article  PubMed  CAS  Google Scholar 

  13. Le Page C, Puiffe ML, Meunier L, Zietarska M, de Ladurantaye M, Tonin PN, et al. BMP-2 signaling in ovarian cancer and its association with poor prognosis. J Ovarian Res. 2009;2:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ye L, Mason MD, Jiang WG. Bone morphogenetic protein and bone metastasis, implication and therapeutic potential. Front. 2011;16:865–97.

    CAS  Google Scholar 

  15. Nickel J, Sebald W, Groppe JC, Mueller TD. Intricacies of BMP receptor assembly. Cytokine Growth Factor Rev. 2009;20:367–77.

    Article  PubMed  CAS  Google Scholar 

  16. Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Sci (New Y, NY). 2002;296:1646–7.

    Article  CAS  Google Scholar 

  17. Hollnagel A, Oehlmann V, Heymer J, Ruther U, Nordheim A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem. 1999;274:19838–45.

    Article  PubMed  CAS  Google Scholar 

  18. Katagiri T, Imada M, Yanai T, Suda T, Takahashi N, Kamijo R. Identification of a BMP-responsive element in Id1, the gene for inhibition of myogenesis. Genes Cells. 2002;7:949–60.

    Article  PubMed  CAS  Google Scholar 

  19. Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002;277:4883–91.

    Article  PubMed  CAS  Google Scholar 

  20. Kurooka H, Nakahiro T, Mori K, Sano K, Yokota Y. BMP signaling is responsible for serum-induced Id2 expression. Biochem Biophys Res Commun. 2012;420:281–7.

    Article  PubMed  CAS  Google Scholar 

  21. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R, et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature. 1999;401:670–7.

    Article  PubMed  CAS  Google Scholar 

  22. Augeri DJ, Langenfeld E, Castle M, Gilleran JA, Langenfeld J. Inhibition of BMP and of TGFbeta receptors downregulates expression of XIAP and TAK1 leading to lung cancer cell death. Mol Cancer. 2016;15:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liu Z, Shen J, Pu K, Katus HA, Ploger F, Tiefenbacher CP, et al. GDF5 and BMP2 inhibit apoptosis via activation of BMPR2 and subsequent stabilization of XIAP. Biochim Biophys Acta. 2009;1793:1819–27.

    Article  PubMed  CAS  Google Scholar 

  24. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J. 1999;18:179–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Obexer P, Ausserlechner MJ. X-linked inhibitor of apoptosis protein—a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol. 2014;4:197.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kaufmann T, Strasser A, Jost PJ. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ. 2012;19:42–50.

    Article  PubMed  CAS  Google Scholar 

  27. Mihaly SR, Ninomiya-Tsuji J, Morioka S. TAK1 control of cell death. Cell Death Differ. 2014;21:1667–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, Deshayes K, et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 2011;18:656–65.

    Article  PubMed  CAS  Google Scholar 

  29. Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005;4:35–44.

    Article  PubMed  CAS  Google Scholar 

  30. Hao J, Ho JN, Lewis JA, Karim KA, Daniels RN, Gentry PR, et al. In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS Chem Biol. 2010;5:245–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med. 2008;14:1363–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Balboni AL, Hutchinson JA, DeCastro AJ, Cherukuri P, Liby K, Sporn MB, et al. DeltaNp63alpha-mediated activation of bone morphogenetic protein signaling governs stem cell activity and plasticity in normal and malignant mammary epithelial cells. Cancer Res. 2013;73:1020–30.

    Article  PubMed  CAS  Google Scholar 

  33. Martinez VG, Hernandez-Lopez C, Valencia J, Hidalgo L, Entrena A, Zapata AG, et al. The canonical BMP signaling pathway is involved in human monocyte-derived dendritic cell maturation. Immunol Cell Biol. 2011;89:610–8.

    Article  PubMed  CAS  Google Scholar 

  34. Martinez VG, Sacedon R, Hidalgo L, Valencia J, Fernandez-Sevilla LM, Hernandez-Lopez C, et al. The BMP pathway participates in human naive CD4+ T cell activation and homeostasis. PloS One. 2015;10:e0131453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Robson NC, Hidalgo L, McAlpine T, Wei H, Martinez VG, Entrena A, et al. Optimal effector functions in human natural killer cells rely upon autocrine bone morphogenetic protein signaling. Cancer Res. 2014;74:5019–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol. 2008;4:33–41.

    Article  PubMed  CAS  Google Scholar 

  37. Cuny GD, Yu PB, Laha JK, Xing X, Liu JF, Lai CS, et al. Structure-activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg Med Chem Lett. 2008;18:4388–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 2004;101:13306–11.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009;462:1070–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Langenfeld E, Hong CC, Lanke G, Langenfeld J. Bone morphogenetic protein type I receptor antagonists decrease growth and induce cell death of lung cancer cell lines. PLoS One. 2013;8:e61256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hao J, Lee R, Chang A, Fan J, Labib C, Parsa C, et al. DMH1, a small molecule inhibitor of BMP type i receptors, suppresses growth and invasion of lung cancer. PloS One. 2014;9:e90748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Dohi T, Okada K, Xia F, Wilford CE, Samuel T, Welsh K, et al. An IAP-IAP complex inhibits apoptosis. J Biol Chem. 2004;279:34087–90.

    Article  PubMed  CAS  Google Scholar 

  43. de Bruin EC, Medema JP. Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev. 2008;34:737–49.

    Article  PubMed  Google Scholar 

  44. Galban S, Hwang C, Rumble JM, Oetjen KA, Wright CW, Boudreault A, et al. Cytoprotective effects of IAPs revealed by a small molecule antagonist. Biochem J. 2009;417:765–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Martinez VG, Hidalgo L, Valencia J, Hernandez-Lopez C, Entrena A, del Amo BG, et al. Autocrine activation of canonical BMP signaling regulates PD-L1 and PD-L2 expression in human dendritic cells. Eur J Immunol. 2014;44:1031–8.

    Article  PubMed  CAS  Google Scholar 

  46. Bobbio A, Alifano M. Immune therapy of non-small cell lung cancer. The future. Pharmacol Res. 2015;99:217–22.

    Article  PubMed  CAS  Google Scholar 

  47. Sharma P, Allison JP. The future of immune checkpoint therapy. Sci (New Y, NY). 2015;348:56–61.

    Article  CAS  Google Scholar 

  48. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clinical cancer research: an official journal of the American Association for. Cancer Res. 2014;20:5064–74.

    CAS  Google Scholar 

  49. Langenfeld EM, Kong Y, Langenfeld J. Bone morphogenetic protein-2-induced transformation involves the activation of mammalian target of rapamycin. Mol Cancer Res. 2005;3:679–84.

    Article  PubMed  CAS  Google Scholar 

  50. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  51. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Hahm E, Wei C, Fernandez I, Li J, Tardi NJ, Tracy M, et al. Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat Med. 2017;23:100–6.

    Article  PubMed  CAS  Google Scholar 

  54. Lu R, Wu S, Zhang Y, Xia Y, Huelsmann EJ, Lacek AT, et al. HIV infection accelerates gastrointestinal tumor outgrowth in NSG-HuPBL mice. AIDS Res Hum Retrovir. 2014;30:677–84.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang YG, Wu S, Lu R, Richards MH, Huelsmann EJ, Lacek AT, et al. HIV infection leads to redistribution of leaky claudin-2 in the intestine of humanized SCID IL-2R(-/-) Hu-PBMC mice. AIDS Res Hum Retrovir. 2015;31:774–5.

    Article  PubMed  Google Scholar 

  56. Kohlhapp FJ, Broucek JR, Hughes T, Huelsmann EJ, Lusciks J, Zayas JP, et al. NK cells and CD8+ T cells cooperate to improve therapeutic responses in melanoma treated with interleukin-2 (IL-2) and CTLA-4 blockade. J Immunother. Cancer. 2015;3:18.

    Google Scholar 

  57. Kohlhapp FJ, Huelsmann EJ, Lacek AT, Schenkel JM, Lusciks J, Broucek JR, et al. Non-oncogenic acute viral infections disrupt anti-cancer responses and lead to accelerated cancer-specific host death. Cell Rep. 2016;17:957–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zloza A, Kohlhapp FJ, Lyons GE, Schenkel JM, Moore TV, Lacek AT, et al. NKG2D signaling on CD8(+) T cells represses T-bet and rescues CD4-unhelped CD8(+) T cell memory recall but not effector responses. Nat Med. 2012;18:422–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work utilized shared resources at Rutgers Cancer Institute of New Jersey, which are supported by NCI P30CA72720.

Author contributions:

J.L. and A.Z. designed the experiments, interpreted the data, and wrote the manuscript. J.H.N. performed in vivo experiments and interpreted the data. D.J.A. designed and synthesized JL5. R.N., E.L., C.B.C., N.S.D., M.J.L., S.T., S.R.J., P.K.B., S.M., and S.L. performed experiments. S.K.J. designed experiments. J.M. performed genetic alternations studies, M.G. interpreted toxicity studies, and M.O.C. performed blood chemistry studies. E.T.S. and C.M. evaluated and interpreted pathology data. J.E.K. designed BMP inhibitors. All authors contributed to writing and/or providing feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew Zloza or John Langenfeld.

Ethics declarations

Conflict of interest

J.L., D.J.A., and J.E.K. are inventors of pending patents related to this study. The remaining authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newman, J.H., Augeri, D.J., NeMoyer, R. et al. Novel bone morphogenetic protein receptor inhibitor JL5 suppresses tumor cell survival signaling and induces regression of human lung cancer. Oncogene 37, 3672–3685 (2018). https://doi.org/10.1038/s41388-018-0156-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0156-9

This article is cited by

Search

Quick links