Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elevated mitochondrial SLC25A29 in cancer modulates metabolic status by increasing mitochondria-derived nitric oxide

Abstract

Warburg effect has been recognized as a hallmark of cancer cells for many years, but its modulation mechanism remains a great focus. Our current study found a member of solute carrier family 25 (SLC25A29), the main arginine transporter on mitochondria, significantly elevated in various cancer cells. Knockout of SLC25A29 by CRISPR/Cas9 inhibited proliferation and migration of cancer cells both in vitro and in vivo. SLC25A29-knockout cells also showed an altered metabolic status with enhanced mitochondrial respiration and reduced glycolysis. All of above impacts could be reversed after rescuing SLC25A29 expression in SLC25A29-knockout cells. Arginine is transported into mitochondria partly for nitric oxide (NO) synthesis. Deletion of SLC25A29 resulted in severe decrease of NO production, indicating that the mitochondria is a significant source of NO. SLC25A29-knockout cells dramatically altered the variation of metabolic processes, whereas addition of arginine failed to reverse the effect, highlighting the necessity of transporting arginine into mitochondria by SLC25A29. In conclusion, aberrant elevated SLC25A29 in cancer functioned to transport more arginine into mitochondria, improved mitochondria-derived NO levels, thus modulated metabolic status to facilitate increased cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30.

    Article  CAS  Google Scholar 

  2. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    Article  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell . 2011;144:646–74.

    Article  CAS  Google Scholar 

  4. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.

    Article  CAS  Google Scholar 

  5. Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res. 2012;72:560–7.

    Article  CAS  Google Scholar 

  6. Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med. 2013;3:a014217.

    Article  Google Scholar 

  7. Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330:1340–4.

    Article  CAS  Google Scholar 

  8. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441:424–30.

    Article  CAS  Google Scholar 

  9. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–510.

    Article  CAS  Google Scholar 

  10. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999;59:5830–5.

    CAS  PubMed  Google Scholar 

  11. Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med. 2014;4:a014357.

    Article  Google Scholar 

  12. Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH. Metabolic regulation by p53 family members. Cell Metab. 2013;18:617–33.

    Article  CAS  Google Scholar 

  13. Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Radic Biol Med. 2015;79:324–36.

    Article  CAS  Google Scholar 

  14. Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta. 1999;1411:351–69.

    Article  CAS  Google Scholar 

  15. Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovasc Res. 2007;75:283–90.

    Article  CAS  Google Scholar 

  16. Brix B, Mesters JR, Pellerin L, Johren O. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1alpha-mediated target gene activation. The. J Neurosci. 2012;32:9727–35.

    Article  CAS  Google Scholar 

  17. Almeida A, Moncada S, Bolanos JP. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol. 2004;6:45–51.

    Article  CAS  Google Scholar 

  18. Switzer CH, Cheng RY, Ridnour LA, Glynn SA, Ambs S, Wink DA. Ets-1 is a transcriptional mediator of oncogenic nitric oxide signaling in estrogen receptor-negative breast cancer. Breast Cancer Res. 2012;14:R125.

    Article  CAS  Google Scholar 

  19. Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 1995;369:136–9.

    Article  CAS  Google Scholar 

  20. Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci. 2005;26:190–5.

    Article  CAS  Google Scholar 

  21. Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Asp Med. 2013;34:465–84.

    Article  CAS  Google Scholar 

  22. Porcelli V, Fiermonte G, Longo A, Palmieri F. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J Biol Chem. 2014;289:13374–84.

    Article  CAS  Google Scholar 

  23. Wu G, Morris SM Jr.. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.

    Article  CAS  Google Scholar 

  24. Kanai AJ, Pearce LL, Clemens PR, Birder LA, VanBibber MM, Choi SY, et al. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA. 2001;98:14126–31.

    Article  CAS  Google Scholar 

  25. Finocchietto PV, Franco MC, Holod S, Gonzalez AS, Converso DP, Antico Arciuch VG, et al. Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death. Exp Biol Med. 2009;234:1020–8.

    Article  CAS  Google Scholar 

  26. Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, et al. Mitochondrial type I nitric oxide synthase physically interacts with cytochrome coxidase. Neurosci Lett. 2005;384:254–9.

    Article  CAS  Google Scholar 

  27. Ghafourifar P, Asbury ML, Joshi SS, Kincaid ED. Determination of mitochondrial nitric oxide synthase activity. Methods Enzymol. 2005;396:424–44.

    Article  CAS  Google Scholar 

  28. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  CAS  Google Scholar 

  29. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  30. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    Article  CAS  Google Scholar 

  31. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.

    Article  CAS  Google Scholar 

  32. Hill BG, Benavides GA, Lancaster JR Jr., Ballinger S, Dell’Italia L, Jianhua Z, et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem. 2012;393:1485–512.

    Article  CAS  Google Scholar 

  33. Monne M, Miniero DV, Daddabbo L, Palmieri L, Porcelli V, Palmieri F. Mitochondrial transporters for ornithine and related amino acids: a review. Amino Acids. 2015;47:1763–77.

    Article  CAS  Google Scholar 

  34. Palmieri F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflug Arch. 2004;447:689–709.

    Article  CAS  Google Scholar 

  35. Sekoguchi E, Sato N, Yasui A, Fukada S, Nimura Y, Aburatani H, et al. A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J Biol Chem. 2003;278:38796–802.

    Article  CAS  Google Scholar 

  36. Camacho JA, Rioseco-Camacho N. The human and mouse SLC25A29 mitochondrial transporters rescue the deficient ornithine metabolism in fibroblasts of patients with the hyperornithinemia- hyperammonemia-homocitrullinuria (HHH) syndrome. Pediatr Res. 2009;66:35–41.

    Article  CAS  Google Scholar 

  37. Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997;418:291–6.

    Article  CAS  Google Scholar 

  38. Dedkova EN, Blatter LA. Characteristics and function of cardiac mitochondrial nitric oxide synthase. J Physiol. 2009;587(Pt 4):851–72.

    Article  CAS  Google Scholar 

  39. Lacza Z, Pankotai E, Busija DW. Mitochondrial nitric oxide synthase: current concepts and controversies. Front Biosci. 2009;14:4436–43.

    Article  CAS  Google Scholar 

  40. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  Google Scholar 

  41. Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem. 2006;17:571–88.

    Article  CAS  Google Scholar 

  42. Moncada S, Bolanos JP. Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem. 2006;97:1676–89.

    Article  CAS  Google Scholar 

  43. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994;356:295–8.

    Article  CAS  Google Scholar 

  44. Cidad P, Almeida A, Bolanos JP. Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5′-AMP-activated protein kinase. Biochem J. 2004;384(Pt 3):629–36.

    Article  CAS  Google Scholar 

  45. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51–6.

    Article  CAS  Google Scholar 

  46. Brune B, Zhou J. Nitric oxide and superoxide: interference with hypoxic signaling. Cardiovasc Res. 2007;75:275–82.

    Article  Google Scholar 

  47. Quintero M, Brennan PA, Thomas GJ, Moncada S. Nitric oxide is a factor in the stabilization of hypoxia-inducible factor-1alpha in cancer: role of free radical formation. Cancer Res. 2006;66:770–4.

    Article  CAS  Google Scholar 

  48. Sandau KB, Fandrey J, Brune B. Accumulation of HIF-1alpha under the influence of nitric oxide. Blood. 2001;97:1009–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the research grants held by Yuchun Gu (973 Project Number 2013CB531206, 973 Project Number 2012CB517803, and NSF Number 81170236 and Number 31127001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchun Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, Q., Gu, J. et al. Elevated mitochondrial SLC25A29 in cancer modulates metabolic status by increasing mitochondria-derived nitric oxide. Oncogene 37, 2545–2558 (2018). https://doi.org/10.1038/s41388-018-0139-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0139-x

This article is cited by

Search

Quick links