AATF suppresses apoptosis, promotes proliferation and is critical for Kras-driven lung cancer

Published online:


A fundamental principle in malignant tranformation is the ability of cancer cells to escape the naturally occurring cell-intrinsic responses to DNA damage. Tumors progress despite the accumulation of DNA lesions. However, the underlying mechanisms of this tolerance to genotoxic stress are still poorly characterized. Here, we show that replication stress occurs in Kras-driven murine lung adenocarcinomas, as well as in proliferating murine embryonic and adult tissues. We identify the transcriptional regulator AATF/CHE-1 as a key molecule to sustain proliferative tissues and tumor progression in parts by inhibiting p53-driven apoptosis in vivo. In an autochthonous Kras-driven lung adenocarcinoma model, deletion of Aatf delayed lung cancer formation predominantly in a p53-dependent manner. Moreover, targeting Aatf in existing tumors through a dual recombinase strategy caused a halt in tumor progression. Taken together, these data suggest that AATF may serve as a drug target to treat KRAS-driven malignancies.

  • Subscribe to Oncogene for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001;15:2177–96.

  2. 2.

    Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.

  3. 3.

    Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

  4. 4.

    Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol. 2009;21:245–55.

  5. 5.

    Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol. 2013;14:563–80.

  6. 6.

    Branzei D, Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 2010;11:208–19.

  7. 7.

    Dobbelstein M, Sørensen CS. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov. 2015;14:405–23.

  8. 8.

    Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017. Accessed 14 Mar 2017.

  9. 9.

    Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3:421–9.

  10. 10.

    Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3:155–68.

  11. 11.

    Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O, et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature. 2001;411:102–7.

  12. 12.

    Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AEH, Yaffe MB. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell. 2005;17:37–48.

  13. 13.

    Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell. 2007;11:175–89.

  14. 14.

    Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MATM, Wang X, et al. DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol Cell. 2010;40:34–49.

  15. 15.

    Raman M, Earnest S, Zhang K, Zhao Y, Cobb MH. TAO kinases mediate activation of p38 in response to DNA damage. EMBO J. 2007;26:2005–14.

  16. 16.

    Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet Tig. 2012;28:128–36.

  17. 17.

    Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006;6:909–23.

  18. 18.

    Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.

  19. 19.

    Shaltiel IA, Krenning L, Bruinsma W, Medema RH. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle. J Cell Sci. 2015;128:607–20.

  20. 20.

    Ahuja AK, Jodkowska K, Teloni F, Bizard AH, Zellweger R, Herrador R, et al. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun. 2016;7:10660.

  21. 21.

    Gaillard H, García-Muse T, Aguilera A. Replication stress and cancer. Nat Rev Cancer. 2015;15:276–89.

  22. 22.

    Fanciulli M, Bruno T, Di Padova M, De Angelis R, Iezzi S, Iacobini C, et al. Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb. FASEB J. 2000;14:904–12.

  23. 23.

    Bruno T, De Nicola F, Iezzi S, Lecis D, D’Angelo C, Di Padova M, et al. Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell. 2006;10:473–86.

  24. 24.

    Höpker K, Hagmann H, Khurshid S, Chen S, Hasskamp P, Seeger-Nukpezah T, et al. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. EMBO J. 2012;31:3961–75.

  25. 25.

    Thomas T, Voss AK, Petrou P, Gruss P. The murine gene, traube, is essential for the growth of preimplantation embryos. Dev Biol. 2000;227:324–42.

  26. 26.

    Höpker K, Hagmann H, Khurshid S, Chen S, Schermer B, Benzing T, et al. Putting the brakes on p53-driven apoptosis. Cell Cycle Georget Tex. 2012;11:4122–8.

  27. 27.

    Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1 modulates the decision between cell cycle arrest and apoptosis by its binding to p53. Cell Death Dis. 2015;6:e1764.

  28. 28.

    Guo Q, Xie J. AATF inhibits aberrant production of amyloid beta peptide 1-42 by interacting directly with Par-4. J Biol Chem. 2004;279:4596–603.

  29. 29.

    Xie J, Guo. AATF protects neural cells against oxidative damage induced by amyloid β-peptide. Neurobiol Dis. 2004;16:150–7.

  30. 30.

    Bruno T, Desantis A, Bossi G, Di Agostino S, Sorino C, De Nicola F, et al. Che-1 promotes tumor cell survival by sustaining mutant p53 transcription and inhibiting DNA damage response activation. Cancer Cell. 2010 ;18:122–34.

  31. 31.

    Kaul D. Cellular AATF gene: armour against HIV-1. Indian J Biochem Biophys. 2007;44:276–8.

  32. 32.

    Bacalini MG, Tavolaro S, Peragine N, Marinelli M, Santangelo S, Del Giudice I, et al. A subset of chronic lymphocytic leukemia patients display reduced levels of PARP1 expression coupled with a defective irradiation-induced apoptosis. Exp Hematol. 2012;40:197–206.e1.

  33. 33.

    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

  34. 34.

    Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34:1214–30.

  35. 35.

    De Nicola F, Catena V, Rinaldo C, Bruno T, Iezzi S, Sorino C, et al. HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation. Cell Death Dis. 2014;5:e1414.

  36. 36.

    Dietlein F, Kalb B, Jokic M, Noll EM, Strong A, Tharun L, et al. A Synergistic interaction between Chk1- and MK2 inhibitors in KRAS-mutant. Cancer Cell. 2015;162:146–59.

  37. 37.

    DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc. 2009;4:1064–72.

  38. 38.

    Jokić M, Vlašić I, Rinneburger M, Klümper N, Spiro J, Vogel W, et al. Ercc1 deficiency promotes tumorigenesis and increases cisplatin sensitivity in a Tp53 context-specific manner. Mol Cancer Res Mcr. 2016;14:1110–23.

  39. 39.

    Hafner M, Wenk J, Nenci A, Pasparakis M, Scharffetter-Kochanek K, Smyth N, et al. Keratin 14 Cre transgenic mice authenticate keratin 14 as an oocyte-expressed protein: K14Cre in oocytes. Genesis. 2004;38:176–81.

  40. 40.

    Hardman MJ, Sisi P, Banbury DN, Byrne C. Patterned acquisition of skin barrier function during development. Development. 1998;125:1541–52.

  41. 41.

    Bruno T, De Angelis R, De Nicola F, Barbato C, Di Padova M, Corbi N, et al. Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb. Cancer Cell. 2002;2:387–99.

  42. 42.

    Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double-fluorescent Cre reporter mouse. Genes N Y N 2000. 2007;45:593–605.

  43. 43.

    Schmitt A, Knittel G, Welcker D, Yang T-P, George J, Nowak M, et al. ATM deficiency is associated with sensitivity to PARP1- and ATR inhibitors in lung adenocarcinoma. Cancer Res. 2017;77: 3040–56.

  44. 44.

    Justilien V, Ali SA, Jamieson L, Yin N, Cox AD, Der CJ, et al. Ect2-dependent rRNA synthesis is required for KRAS-TRP53-driven lung adenocarcinoma. Cancer Cell. 2017;31:256–69.

  45. 45.

    Bruno T, Iezzi S, Fanciulli M. Che-1/AATF: A critical cofactor for both wild-type- and mutant-p53 proteins. FrontOncol. 2016;6. Accessed 15 Feb 2017.

  46. 46.

    Bruno T, Iezzi S, De Nicola F, Di Padova M, Desantis A, Scarsella M, et al. Che-1 activates XIAP expression in response to DNA damage. Cell Death Differ. 2008;15:515–20.

  47. 47.

    Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9:517–31.

  48. 48.

    Clinical Lung Cancer Genome Project (CLCGP), Network genomic medicine (NGM). A genomics-based classification of human lung tumors. Sci Transl Med. 2013;5:209ra153.

  49. 49.

    Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11:761–74.

  50. 50.

    Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444:638–42.

  51. 51.

    Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 2014;21:998–1012.

  52. 52.

    Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 1997;275:1649–52.

  53. 53.

    Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem. 1999;274:7936–40.

  54. 54.

    Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B, et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene. 2012;31: 1117–29.

  55. 55.

    Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, et al. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol. 2015;9:601–16.

  56. 56.

    Fikaris AJ, Lewis AE, Abulaiti A, Tsygankova OM, Meinkoth JL. Ras triggers ataxia-telangiectasia-mutated and Rad-3-related activation and apoptosis through sustained mitogenic signaling. J Biol Chem. 2006 ;281:34759–67.

  57. 57.

    Grabocka E, Commisso C, Bar-Sagi D. Molecular pathways: targeting the dependence of mutant RAS cancers on the DNA damage response. Clin Cancer Res J Am Assoc Cancer Res. 2015;21:1243–7.

  58. 58.

    Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445:661–5.

  59. 59.

    Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14:994–1004.

  60. 60.

    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

  61. 61.

    Schönhuber N, Seidler B, Schuck K, Veltkamp C, Schachtler C, Zukowska M, et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med. 2014;20:1340–7.

  62. 62.

    Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224: 213–32.

  63. 63.

    Ollion J, Cochennec J, Loll F, Escudé C, Boudier T, TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinforma Oxf Engl. 2013;29:1840–1.

  64. 64.

    Durkin ME, Qian X, Popescu NC, Lowy DR, Isolation of mouse embryo fibroblasts. Bio-Protoc. 2013;3(18):e908

  65. 65.

    Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H, et al. The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev. 2009;23:1895–909.

Download references


The authors thank Alexandra Florin, Marion Müller and Ursula Rommerscheidt-Fuß, Institute of Pathology and Martyna Brütting, CECAD, University Hospital Cologne, for their outstanding technical support.


This work was supported by Volkswagenstiftung (Lichtenberg Program to HCR), Deutsche Forschungsgemeinschaft (KFO-286 to HCR, SFB-829 to HCR, CN and TB, SCHE1562/2 to BS, BE2212 to TB), Bundesministerium für Bildung und Forschung (SMOOSE to HCR, SYBACOL to TB), German federal state North Rhine Westphalia (NRW) as part of the EFRE initiative (grant LS-1-1-030a to HCR), Else Kröner-Fresenius Stiftung (EKFS-2014-A06 to HCR), Deutsche Krebshilfe (111724, HCR), University of Cologne (Köln Fortune Program to KH), Cologne Cardiovascular Research Center (Graduate Program to MJ), Cologne Graduate School of Ageing Research (to SK), CECAD Research Center Cologne Maternity Leave Fellowship to DW.

Author information

Author notes

  1. Daniela Welcker, Manaswita Jain and Safiya Khurshid contributed equally to this work.


  1. Department II of Internal Medicine, University of Cologne, Cologne, Germany

    • Daniela Welcker
    • , Manaswita Jain
    • , Safiya Khurshid
    • , Martin Höhne
    • , Anna Schmitt
    • , Bernhard Schermer
    • , Thomas Benzing
    •  & Katja Höpker
  2. Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany

    • Daniela Welcker
    • , Manaswita Jain
    • , Safiya Khurshid
    • , Mladen Jokić
    • , Martin Höhne
    • , Peter Frommolt
    • , Carien M. Niessen
    • , Bernhard Schermer
    • , Hans Christian Reinhardt
    • , Thomas Benzing
    •  & Katja Höpker
  3. Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA

    • Safiya Khurshid
  4. Department I of Internal Medicine, University of Cologne, Cologne, Germany

    • Mladen Jokić
    •  & Hans Christian Reinhardt
  5. Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany

    • Mladen Jokić
    • , Martin Höhne
    • , Carien M. Niessen
    • , Bernhard Schermer
    • , Hans Christian Reinhardt
    •  & Thomas Benzing
  6. Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany

    • Martin Höhne
    • , Bernhard Schermer
    •  & Thomas Benzing
  7. Department of Dermatology, University of Cologne, Cologne, Germany

    • Carien M. Niessen
  8. Department of Radiology, University of Cologne, Cologne, Germany

    • Judith Spiro
    •  & Thorsten Persigehl
  9. Department of Pathology, University of Cologne, Cologne, Germany

    • Maike Wittersheim
    •  & Reinhard Büttner
  10. Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Laboratory, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy

    • Maurizio Fanciulli


  1. Search for Daniela Welcker in:

  2. Search for Manaswita Jain in:

  3. Search for Safiya Khurshid in:

  4. Search for Mladen Jokić in:

  5. Search for Martin Höhne in:

  6. Search for Anna Schmitt in:

  7. Search for Peter Frommolt in:

  8. Search for Carien M. Niessen in:

  9. Search for Judith Spiro in:

  10. Search for Thorsten Persigehl in:

  11. Search for Maike Wittersheim in:

  12. Search for Reinhard Büttner in:

  13. Search for Maurizio Fanciulli in:

  14. Search for Bernhard Schermer in:

  15. Search for Hans Christian Reinhardt in:

  16. Search for Thomas Benzing in:

  17. Search for Katja Höpker in:

Conflict of interest

HCR received consulting fees from Abbvie, Vertex, AstraZeneca and Merck. HCR received research funding from Gilead. All other authors declare that they have no competing interests.

Corresponding authors

Correspondence to Hans Christian Reinhardt or Thomas Benzing.

Electronic supplementary material