Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HSP90 inhibition alters the chemotherapy-driven rearrangement of the oncogenic secretome

Abstract

Adaptive resistance to therapy is a hallmark of cancer progression. To date, it is not entirely clear how microenvironmental stimuli would mediate emergence of therapy-resistant cell subpopulations, although a rearrangement of the cancer cell secretome following therapy-induced stress can be pivotal for such a process. Here, by using the highly chemoresistant malignant pleural mesothelioma (MPM) as an experimental model, we unveiled a key contribution of the chaperone HSP90 at assisting a chemotherapy-instigated Senescence-Associated-Secretory-Phenotype (SASP). Thus, administration of a clinical trial grade, HSP90, inhibitor blunted the release of several cytokines by the chemotherapy-treated MPM cells, including interleukin (IL)-8. Reduction of IL-8 levels hampered the FAK-AKT signaling and inhibited 3D growth and migration. This correlated with downregulation of key EMT and chemoresistance genes and affected the survival of chemoresistant ALDHbright cell subpopulations. Altogether, inhibition of HSP90 provoked a switch from a pro-tumorigenic SASP to a pro-apoptotic senescence status, thus resulting in chemosensitizing effects. In mouse xenografts treated with first-line agents, inhibiting HSP90 blunted FAK activation and reduced the expression of ALDH1A3 and the levels of circulating human IL-8, these latter strongly correlating with the effect on tumor growth. We validated the above findings in primary mesothelioma cultures, a more clinically relevant model. We unveiled here a key contribution of the chaperone HSP90 at assisting the secretory stress in chemotherapy-treated cells, which may warrant further investigation in combinatorial therapeutic settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HSP90 inhibitors affected viability of malignant pleural mesothelioma (MPM) cells
Fig. 2: Ganetespib treatment turned senescence into apoptosis when co-administered with P + C
Fig. 3: Ganetespib treatment attenuated the protumorigenic properties of the conditioned medium derived from P + C-treated MPM cells
Fig. 4: Ganetespib treatment attenuated the SASP-induced protumorigenic properties in P + C-treated MPM cells
Fig. 5: IL-8 was responsible for the increased pFAK and pAKT following (P + C)-CM addition
Fig. 6: Ganetespib treatment affected tumor growth and resistance to pemetrexed + cisplatin
Fig. 7: Ganetespib addition sensitized primary MPM cultures to P + C

Similar content being viewed by others

References

  1. Pribluda A, de la Cruz CC, Jackson EL. Intratumoral heterogeneity: from diversity comes resistance. Clin Cancer Res 2015;21:2916–23.

    Article  CAS  Google Scholar 

  2. Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, et al. Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med 2012;4:675–84.

    Article  CAS  Google Scholar 

  3. Basu D, Reyes-Mugica M, Rebbaa A. Role of the beta catenin destruction complex in mediating chemotherapy-induced senescence-associated secretory phenotype. PLoS One 2012;7:e52188.

    Article  CAS  Google Scholar 

  4. Obenauf AC, Zou Y, Ji AL, Vanharanta S, Shu W, Shi H, et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature. 2015;520:368–72.

    Article  CAS  Google Scholar 

  5. Mujoomdar AA, Tilleman TR, Richards WG, Bueno R, Sugarbaker DJ. Prevalence of in vitro chemotherapeutic drug resistance in primary malignant pleural mesothelioma: result in a cohort of 203 resection specimens. J Thorac Cardiovasc Surg 2010;140:352–5.

    Article  CAS  Google Scholar 

  6. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 2003;21:2636–44.

    Article  CAS  Google Scholar 

  7. Carbone M, Ly BH, Dodson RF, Pagano I, Morris PT, Dogan UA, et al. Malignant mesothelioma: facts, myths, and hypotheses. J Cell Physiol 2012;227:44–58.

    Article  CAS  Google Scholar 

  8. Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Beuschel SL, Butnor KJ, et al. Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model. Ann N Y Acad Sci 2010;1203:7–14.

    Article  CAS  Google Scholar 

  9. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013;15:978–90.

    Article  CAS  Google Scholar 

  10. Campisi J, Andersen JK, Kapahi P, Melov S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 2011;21:354–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008;6:2853–68.

    Article  CAS  Google Scholar 

  12. Bussing I, Slack FJ, Grosshans H. let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 2008;14:400–9.

    Article  Google Scholar 

  13. Canino C, Mori F, Cambria A, Diamantini A, Germoni S, Alessandrini G, et al. SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene. 2012;31:3148–63.

    Article  CAS  Google Scholar 

  14. Canino C, Luo Y, Marcato P, Blandino G, Pass HI, Cioce M, A STAT3-NFkB/DDIT3/CEBPbeta axis modulates ALDH1A3 expression in chemoresistant cell subpopulations. Oncotarget. 2015;6:12637–53.

    Article  Google Scholar 

  15. Marcato P, Dean CA, Giacomantonio CA, Lee PW. Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 2011;10:1378–84.

    Article  CAS  Google Scholar 

  16. Shapiro IM, Kolev VN, Vidal CM, Kadariya Y, Ring JE, Wright Q, et al. Merlin deficiency predicts FAK inhibitor sensitivity: a synthetic lethal relationship. Sci Transl Med 2014;6:237ra268.

    Google Scholar 

  17. Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, et al. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell. 2012;150:987–1001.

    Article  CAS  Google Scholar 

  18. Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 2010;10:537–49.

    Article  CAS  Google Scholar 

  19. Busacca S, Law EW, Powley IR, Proia DA, Sequeira M, Le Quesne J, et al. Resistance to HSP90 inhibition involving loss of MCL1 addiction. Oncogene. 2016;35:1483–92.

    Article  CAS  Google Scholar 

  20. Genovese G, Carugo A, Tepper J, Robinson FS, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542:362–6.

    Article  CAS  Google Scholar 

  21. He S, Smith DL, Sequeira M, Sang J, Bates RC, Proia DA. The HSP90 inhibitor ganetespib has chemosensitizer and radiosensitizer activity in colorectal cancer. Invest New Drugs 2014;32:577–86.

    Article  CAS  Google Scholar 

  22. Lai CH, Park KS, Lee DH, Alberobello AT, Raffeld M, Pierobon M, et al. HSP-90 inhibitor ganetespib is synergistic with doxorubicin in small cell lung cancer. Oncogene. 2014;33:4867–76.

    Article  CAS  Google Scholar 

  23. Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ, Inoue T, et al. Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res 2012;18:4973–85.

    Article  CAS  Google Scholar 

  24. Thakur MK, Heilbrun LK, Sheng S, Stein M, Liu G, Antonarakis ES, et al. A phase II trial of ganetespib, a heat shock protein 90 Hsp90) inhibitor, in patients with docetaxel-pretreated metastatic castrate-resistant prostate cancer (CRPC)-a prostate cancer clinical trials consortium (PCCTC) study. Invest New Drugs 2016;34:112–8.

    Article  CAS  Google Scholar 

  25. Socinski MA, Goldman J, El-Hariry I, Koczywas M, Vukovic V, Horn L, et al. A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin Cancer Res 2013;19:3068–77.

    Article  CAS  Google Scholar 

  26. Ying W, Du Z, Sun L, Foley KP, Proia DA, Blackman RK, et al. Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy. Mol Cancer Ther 2012;11:475–84.

    Article  CAS  Google Scholar 

  27. Garon EB, Finn RS, Hamidi H, Dering J, Pitts S, Kamranpour N, et al. The HSP90 inhibitor NVP-AUY922 potently inhibits non-small cell lung cancer growth. Mol Cancer Ther 2013;12:890–900.

    Article  CAS  Google Scholar 

  28. Lundgren K, Zhang H, Brekken J, Huser N, Powell RE, Timple N, et al. BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther 2009;8:921–9.

    Article  CAS  Google Scholar 

  29. Ohkubo S, Kodama Y, Muraoka H, Hitotsumachi H, Yoshimura C, Kitade M, et al. TAS-116, a highly selective inhibitor of heat shock protein 90alpha and beta, demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models. Mol Cancer Ther 2015;14:14–22.

    Article  CAS  Google Scholar 

  30. Aird KM, Zhang R. Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol 2013;965:185–96.

    Article  CAS  Google Scholar 

  31. Corpet A, Stucki M, Chromatin maintenance and dynamics in senescence: a spotlight on SAHF formation and the epigenome of senescent cells. Chromosoma. 2014;123:423–36.

    Article  Google Scholar 

  32. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 2009;4:1798–806.

    Article  CAS  Google Scholar 

  33. Cahu J, Bustany S, Sola B. Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells. Cell Death Dis 2012;3:e446.

    Article  CAS  Google Scholar 

  34. Alimbetov D, Davis T, Brook AJ, Cox LS, Faragher RG, Nurgozhin T, et al. Suppression of the senescence-associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2. Biogerontology. 2016;17:305–15.

    Article  CAS  Google Scholar 

  35. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010;120:485–97.

    Article  CAS  Google Scholar 

  36. Jones SF, Siu LL, Bendell JC, Cleary JM, Razak AR, Infante JR, et al. A phase I study of VS-6063, a second-generation focal adhesion kinase inhibitor, in patients with advanced solid tumors. Invest New Drugs 2015;33:1100–7.

    Article  CAS  Google Scholar 

  37. Shimizu T, Fukuoka K, Takeda M, Iwasa T, Yoshida T, Horobin J, et al. A first-in-Asian phase 1 study to evaluate safety, pharmacokinetics and clinical activity of VS-6063, a focal adhesion kinase (FAK) inhibitor in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 2016;77:997–1003.

    Article  CAS  Google Scholar 

  38. Sarker D, Ang JE, Baird R, Kristeleit R, Shah K, Moreno V, et al. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin Cancer Res 2015;21:77–86.

    Article  CAS  Google Scholar 

  39. Canino C, Cioce M. Isolation of chemoresistant cell subpopulations. Methods Mol Biol 2016;1379:139–50.

    Article  CAS  Google Scholar 

  40. Chernova T, Sun XM, Powley IR, Galavotti S, Grosso S, Murphy FA, et al. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease. Cell Death Differ 2016;23:1152–64.

    Article  CAS  Google Scholar 

  41. Kim KU, Wilson SM, Abayasiriwardana KS, Collins R, Fjellbirkeland L, Xu Z, et al. A novel in vitro model of human mesothelioma for studying tumor biology and apoptotic resistance. Am J Respir Cell Mol Biol 2005;33:541–8.

    Article  CAS  Google Scholar 

  42. Cortes-Dericks L, Carboni GL, Schmid RA, Karoubi G. Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed. Int J Oncol 2010;37:437–44.

    CAS  PubMed  Google Scholar 

  43. Cortes-Dericks L, Froment L, Boesch R, Schmid RA, Karoubi G. Cisplatin-resistant cells in malignant pleural mesothelioma cell lines show ALDH(high)CD44(+) phenotype and sphere-forming capacity. BMC Cancer 2014;14:304.

    Article  Google Scholar 

  44. Patel S, Ngounou Wetie AG, Darie CC, Clarkson BD. Cancer secretomes and their place in supplementing other hallmarks of cancer. Adv Exp Med Biol 2014;806:409–42.

    Article  CAS  Google Scholar 

  45. Davalos AR, Coppe JP, Campisi J, Desprez PY. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastas- Rev 2010;29:273–83.

    Article  Google Scholar 

  46. Mathias RA, Wang B, Ji H, Kapp EA, Moritz RL, Zhu HJ, et al. Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition. J Prote Res 2009;8:2827–37.

    Article  CAS  Google Scholar 

  47. Ohanna M, Giuliano S, Bonet C, Imbert V, Hofman V, Zangari J, et al. Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev. 2011;25:1245–61.

    Article  CAS  Google Scholar 

  48. Ohanna M, Cheli Y, Bonet C, Bonazzi VF, Allegra M, Giuliano S, et al. Secretome from senescent melanoma engages the STAT3 pathway to favor reprogramming of naive melanoma towards a tumor-initiating cell phenotype. Oncotarget. 2013;4:2212–24.

    Article  Google Scholar 

  49. Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y, et al. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res 2007;67:6854–62.

    Article  CAS  Google Scholar 

  50. Galffy G, Mohammed KA, Dowling PA, Nasreen N, Ward MJ, Antony VB. Interleukin 8: an autocrine growth factor for malignant mesothelioma. Cancer Res 1999;59:367–71.

    CAS  PubMed  Google Scholar 

  51. Galffy G, Mohammed KA, Nasreen N, Ward MJ, Antony VB. Inhibition of interleukin-8 reduces human malignant pleural mesothelioma propagation in nude mouse model. Oncol Res 1999;11:187–94.

    CAS  PubMed  Google Scholar 

  52. Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G, et al. Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer 2011;128:2038–49.

    Article  CAS  Google Scholar 

  53. Park SY, Han J, Kim JB, Yang MG, Kim YJ, Lim HJ, et al. Interleukin-8 is related to poor chemotherapeutic response and tumourigenicity in hepatocellular carcinoma. Eur J Cancer 2014;50:341–50.

    Article  CAS  Google Scholar 

  54. Singh JK, Simoes BM, Howell SJ, Farnie G, Clarke RB. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res 2013;15:210.

    Article  Google Scholar 

  55. Wang Y, Qu Y, Niu XL, Sun WJ, Zhang XL, Li LZ, Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine. 2011;56:365–75.

    Article  CAS  Google Scholar 

  56. Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, Scharpe S, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 2004;10:7157–62.

    Article  CAS  Google Scholar 

  57. Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 2011;30:1536–48.

    Article  CAS  Google Scholar 

  58. Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science, 2015;349:aaa5612.

    Article  Google Scholar 

  59. Gomez-Casal R, Bhattacharya C, Epperly MW, Basse PH, Wang H, Wang X, et al. The HSP90 inhibitor ganetespib radiosensitizes human lung adenocarcinoma cells. Cancers. 2015;7:876–907.

    Article  CAS  Google Scholar 

  60. Chatterjee S, Huang EH, Christie I, Kurland BF, Burns TF. Acquired resistance to the Hsp90 inhibitor, ganetespib, in KRAS-Mutant NSCLC is mediated via reactivation of the ERK-p90RSK-mTOR signaling network. Mol Cancer Ther 2017;16:793–804.

    Article  CAS  Google Scholar 

  61. Liu X, Ban LL, Luo G, Li ZY, Li YF, Zhou YC, et al. Acquired resistance to HSP90 inhibitor 17-AAG and increased metastatic potential are associated with MUC1 expression in colon carcinoma cells. Anticancer Drugs 2016;27:417–26.

    Article  Google Scholar 

  62. Piper PW, Millson SH, Mechanisms of resistance to Hsp90 inhibitor drugs: a complex mosaic emerges. Pharmaceuticals. 2011;4:1400–22.

    Article  CAS  Google Scholar 

  63. Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017;7:165–76.

    Article  CAS  Google Scholar 

  64. Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049–61.

    Article  CAS  Google Scholar 

  65. Cioce M, Canino C, Goparaju C, Yang H, Carbone M, Pass HI. Autocrine CSF-1R signaling drives mesothelioma chemoresistance via AKT activation. Cell Death Dis 2014;5:e1167.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The funding for this study was provided by the Fundacio' La Marato' de TV3 (grant 432/C/2013) to RDM. M.C. was supported by an AIRC and Marie Curie Actions—People—COFUND fellowship. We thankfully acknowledge the support of the Italian Ministry of Health (Progetto Nazionale Amianto) to R.D.M. We thankfully acknowledge the helpful advice of Dr. Paola Nisticò, Dr. Maria Lucia Dell’ Anna, and Dr. Valeria Catena (Regina Elena National Cancer Institute, Rome, Italy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruggero De Maria or Mario Cioce.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

di Martino, S., Amoreo, C.A., Nuvoli, B. et al. HSP90 inhibition alters the chemotherapy-driven rearrangement of the oncogenic secretome. Oncogene 37, 1369–1385 (2018). https://doi.org/10.1038/s41388-017-0044-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0044-8

This article is cited by

Search

Quick links