Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bidirectional crosstalk between eosinophils and esophageal epithelial cells regulates inflammatory and remodeling processes

Abstract

Eosinophils accumulate adjacent to epithelial cells in the mucosa of patients with eosinophilic esophagitis (EoE), yet the bidirectional communication between these cells is not well understood. Herein, we investigated the crosstalk between human eosinophils and esophageal epithelial cells. We report that blood-derived eosinophils have prolonged survival when cocultured with epithelial cells; 96 ± 1% and 30 ± 6% viability was observed after 7 and 14 days of coculture, respectively, compared with 1 ± 0% and 0 ± 0% of monoculture. In the presence of IL-13 and epithelial cells, eosinophils had greater survival (68 ± 1%) at 14 days compared with cocultures lacking IL-13. Prolonged eosinophil viability did not require cellular contact and was observed when eosinophils were cultured in conditioned media from esophageal epithelial cells; neutralizing GM-CSF attenuated eosinophil survival. The majority of eosinophil transcripts (58%) were dysregulated in cocultured eosinophils compared with freshly isolated cells. Analysis of epithelial cell transcripts indicated that exposure to eosinophils induced differential expression of a subset of genes that were part of the EoE esophageal transcriptome. Collectively, these results uncover a network of crosstalk between eosinophils and esophageal epithelial cells involving epithelial mediated eosinophil survival and reciprocal changes in cellular transcripts, events likely to occur in EoE.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Eosinophil survival and surface marker expression in coculture.
Fig. 2: Contact-independent effect of coculture on eosinophil viability.
Fig. 3: Soluble factors observed in eosinophil and epithelial cell coculture.
Fig. 4: Functional impact of soluble factors in coculture on eosinophil migration and viability.
Fig. 5: Tissue-specific responses of eosinophil gene expression to epithelial coculture.
Fig. 6: Tissue-specific responses of eosinophil gene expression to epithelial coculture.
Fig. 7: Eosinophil-dependent changes to epithelial gene expression.

References

  1. 1.

    Zuo, L. et al. IL-13 induces esophageal remodeling and gene expression by an eosinophil-independent, IL-13R alpha 2-inhibited pathway. J. Immunol. 185, 660–669 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Ben Baruch-Morgenstern, N. et al. Paired Ig-like receptor B inhibits IL-13-driven eosinophil accumulation and activation in the esophagus. J. Immunol. 197, 707–714 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Rothenberg, M. E. et al. Intravenous anti-IL-13 mAb QAX576 for the treatment of eosinophilic esophagitis. J. Allergy Clin. Immunol. 135, 500–507 (2015).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Hirano, I. et al. RPC4046, a monoclonal antibody against IL13, reduces histologic and endoscopic activity in patients with eosinophilic esophagitis. Gastroenterology 156, 592–603 e510 (2019).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Kc, K., Rothenberg, M. E. & Sherrill, J. D. In vitro model for studying esophageal epithelial differentiation and allergic inflammatory responses identifies keratin involvement in eosinophilic esophagitis. PLoS One 10, e0127755 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Rochman, M. et al. Profound loss of esophageal tissue differentiation in patients with eosinophilic esophagitis. J. Allergy Clin. Immunol. 140, 738–749 e733 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Kottyan, L. C. et al. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease. Nat. Genet. 46, 895–900 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Davis, B. P. et al. Eosinophilic esophagitis-linked calpain 14 is an IL-13-induced protease that mediates esophageal epithelial barrier impairment. JCI Insight 1, e86355 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Litosh, V. A. et al. Calpain-14 and its association with eosinophilic esophagitis. J. Allergy Clin. Immunol. 139, 1762–1771 e1767 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Masterson, J. C. et al. Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis. Gut 64, 1236–1247 (2015).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Sugawara, R. et al. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist. J. Exp. Med. 213, 555–567 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Weller, P. F. & Spencer, L. A. Functions of tissue-resident eosinophils. Nat. Rev. Immunol. 17, 746–760 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Rozenberg, P. et al. CD300f:IL-5 cross-talk inhibits adipose tissue eosinophil homing and subsequent IL-4 production. Sci. Rep. 7, 5922 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Lee, J. J., Jacobsen, E. A., McGarry, M. P., Schleimer, R. P. & Lee, N. A. Eosinophils in health and disease: the LIAR hypothesis. Clin. Exp. Allergy 40, 563–575 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Jacobsen, E. A. et al. Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice. Allergy 69, 315–327 (2014).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Shah, K., Ignacio, A., McCoy, K. D. & Harris, N. L. The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol. 13, 574–583 (2020).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Simon, H. U., Yousefi, S., Dibbert, B., Levi-Schaffer, F. & Blaser, K. Anti-apoptotic signals of granulocyte-macrophage colony-stimulating factor are transduced via Jak2 tyrosine kinase in eosinophils. Eur. J. Immunol. 27, 3536–3539 (1997).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Nutku-Bilir, E., Hudson, S. A. & Bochner, B. S. Interleukin-5 priming of human eosinophils alters siglec-8 mediated apoptosis pathways. Am. J. Respir. Cell Mol. Biol. 38, 121–124 (2008).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Johansson, M. W. et al. Anti-IL-5 attenuates activation and surface density of beta(2) -integrins on circulating eosinophils after segmental antigen challenge. Clin. Exp. Allergy 43, 292–303 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Fulkerson, P. C., Schollaert, K. L., Bouffi, C. & Rothenberg, M. E. IL-5 triggers a cooperative cytokine network that promotes eosinophil precursor maturation. J. Immunol. 193, 4043–4052 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Han, S. T. & Mosher, D. F. IL-5 induces suspended eosinophils to undergo unique global reorganization associated with priming. Am. J. Respir. Cell Mol. Biol. 50, 654–664 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Egea, L., Hirata, Y. & Kagnoff, M. F. GM-CSF: a role in immune and inflammatory reactions in the intestine. Expert Rev. Gastroenterol. Hepatol. 4, 723–731 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Sherrill, J. D. et al. Desmoglein-1 regulates esophageal epithelial barrier function and immune responses in eosinophilic esophagitis. Mucosal Immunol. 7, 718–729 (2014).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Dunn, J. L. M. et al. Esophageal type 2 cytokine expression heterogeneity in eosinophilic esophagitis in a multisite cohort. J. Allergy Clin. Immunol. 145, 1629–1640 e1624 (2020).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Shimizu, S. et al. Eosinophil-epithelial cell interactions stimulate the production of MUC5AC mucin and profibrotic cytokines involved in airway tissue remodeling. Am. J. Rhinol. Allergy 28, 103–109 (2014).

    PubMed  Article  Google Scholar 

  26. 26.

    Kottyan, L. C. & Rothenberg, M. E. Genetics of eosinophilic esophagitis. Mucosal Immunol. 10, 580–588 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Namjou, B. et al. Phenome-wide association study (PheWAS) in EMR-linked pediatric cohorts, genetically links PLCL1 to speech language development and IL5-IL13 to EOsinophilic Esophagitis. Front. Genet. 5, 401 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Barnig, C. et al. Circulating human eosinophils share a similar transcriptional profile in asthma and other hypereosinophilic disorders. PLoS One 10, e0141740 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737–746 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Andreev, D. et al. Regulatory eosinophils induce the resolution of experimental arthritis and appear in remission state of human rheumatoid arthritis. Ann. Rheum. Dis. 80, 451–468 (2020).

    Article  CAS  Google Scholar 

  31. 31.

    Luttmann, W. et al. Activation of human eosinophils by IL-13. Induction of CD69 surface antigen, its relationship to messenger RNA expression, and promotion of cellular viability. J. Immunol. 157, 1678–1683 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Le-Carlson M, Seki S, Abarbanel D, Quiros A, Cox K, Nadeau KC. Markers of antigen presentation and activation on eosinophils and T cells in the esophageal tissue of patients with eosinophilic esophagitis. J Pediatr Gastroenterol Nutr. 56, 257–62. https://doi.org/10.1097/MPG.0b013e3182758d49 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Bullock, J. Z. et al. Interplay of adaptive th2 immunity with eotaxin-3/c-C chemokine receptor 3 in eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 45, 22–31 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Bhattacharya, B. et al. Increased expression of eotaxin-3 distinguishes between eosinophilic esophagitis and gastroesophageal reflux disease. Hum. Pathol. 38, 1744–1753 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Johnsson, M. et al. Distinctive blood eosinophilic phenotypes and cytokine patterns in eosinophilic esophagitis, inflammatory bowel disease and airway allergy. J. Innate Immun. 3, 594–604 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Penido, C. et al. LPS induces eosinophil migration via CCR3 signaling through a mechanism independent of RANTES and Eotaxin. Am. J. Respir. Cell Mol. Biol. 25, 707–716 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Fulkerson, P. C. et al. A central regulatory role for eosinophils and the eotaxin/CCR3 axis in chronic experimental allergic airway inflammation. Proc. Natl Acad. Sci. USA 103, 16418–16423 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Trautmann, A. et al. T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma. J. Allergy Clin. Immunol. 109, 329–337 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Pope, S. M., Zimmermann, N., Stringer, K. F., Karow, M. L. & Rothenberg, M. E. The eotaxin chemokines and CCR3 are fundamental regulators of allergen-induced pulmonary eosinophilia. J. Immunol. 175, 5341–5350 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Johansson, M. W., Kelly, E. A., Nguyen, C. L., Jarjour, N. N. & Bochner, B. S. Characterization of Siglec-8 expression on lavage cells after segmental lung allergen challenge. Int Arch. Allergy Immunol. 177, 16–28 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Fulkerson, P. C. & Rothenberg, M. E. Eosinophil development, disease involvement, and therapeutic suppression. Adv. Immunol. 138, 1–34 (2018).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Straumann, A. et al. Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled, double-blind trial. Gut 59, 21–30 (2010).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Assa’ad, A. H. et al. An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology 141, 1593–1604 (2011).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Otani, I. M. et al. Anti-IL-5 therapy reduces mast cell and IL-9 cell numbers in pediatric patients with eosinophilic esophagitis. J. Allergy Clin. Immunol. 131, 1576–1582 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Nelson, R. K. et al. Human eosinophils express a distinct gene expression program in response to IL-3 compared with common beta-chain cytokines IL-5 and GM-CSF. J. Immunol. 203, 329–337 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Cherry, W. B., Yoon, J., Bartemes, K. R., Iijima, K. & Kita, H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J. Allergy Clin. Immunol. 121, 1484–1490 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Matsumoto, K. et al. CD44 and CD69 represent different types of cell-surface activation markers for human eosinophils. Am. J. Respir. Cell Mol. Biol. 18, 860–866 (1998).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Barthel, S. R., Jarjour, N. N., Mosher, D. F. & Johansson, M. W. Dissection of the hyperadhesive phenotype of airway eosinophils in asthma. Am. J. Respir. Cell Mol. Biol. 35, 378–386 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Reichman, H. et al. Activated eosinophils exert antitumorigenic activities in colorectal cancer. Cancer Immunol. Res. 7, 388–400 (2019).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Wen, T. et al. Single-cell RNA sequencing identifies inflammatory tissue T cells in eosinophilic esophagitis. J. Clin. Investig. 130, 2014–2028 (2019).

    Article  Google Scholar 

  51. 51.

    Kodavanti, U. P., Jaskot, R. H., Bonner, J., Badgett, A. & Dreher, K. L. Eosinophilic lung inflammation in particulate-induced lung injury: technical consideration in isolating RNA for gene expression studies. Exp. Lung Res. 22, 541–554 (1996).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Toni, L. S. et al. Optimization of phenol-chloroform RNA extraction. MethodsX 5, 599–608 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Bouffi, C. et al. Transcription factor repertoire of homeostatic eosinophilopoiesis. J. Immunol. 195, 2683–2695 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Vallabh, S., Kartashov, A. V. & Barski, A. Analysis of ChIP-seq and RNA-seq data with BioWardrobe. Methods Mol. Biol. 1783, 343–360 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the NIH R01 A1045898. All flow cytometric data were acquired using equipment maintained by the Research Flow Cytometry Core in the Division of Rheumatology at Cincinnati Children’s Hospital Medical Center, and this work was supported in part by the Digestive Health Center (NIDDK P30 DK078392). The authors would like to thank Shawna Hottinger for editorial support.

Author information

Affiliations

Authors

Contributions

J.L.M.D. and M.E.R. conceived of the study and initiated study design. J.L.M.D., J.M.C., N.B.B.M., M.R., and M.E.R. refined the study protocol. J.L.M.D. and A.B. conducted statistical analysis. J.M.C. coordinated human sample collection. J.L.M.D. and M.R. isolated RNA and M.R. performed qPCR experiments. J.L.M.D. prepared figures for the manuscript and wrote initial and subsequent drafts. All authors contributed to the interpretation of data and critically reviewed the manuscript for important intellectual content. All authors approved the final version of this manuscript.

Corresponding author

Correspondence to Marc E. Rothenberg.

Ethics declarations

Competing interests

M.E.R. is a consultant for Pulm One, Spoon Guru, ClostraBio, Serpin Pharm, Allakos, Celgene, Astra Zeneca, Arena Pharmaceuticals, Glaxo Smith Kline, Guidepoint, and Suvretta Capital Management and has an equity interest in the first five listed and royalties from reslizumab (Teva Pharmaceuticals), PEESSv2 (Mapi Research Trust) and UpToDate. M.E.R. is an inventor of patents owned by Cincinnati Children’s Hospital.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dunn, J.L.M., Caldwell, J.M., Ballaban, A. et al. Bidirectional crosstalk between eosinophils and esophageal epithelial cells regulates inflammatory and remodeling processes. Mucosal Immunol (2021). https://doi.org/10.1038/s41385-021-00400-y

Download citation

Search

Quick links