Succinate, an intermediate of the tricarboxylic acid cycle, is accumulated in inflamed areas and its signaling through succinate receptor (SUCNR1) regulates immune function. We analyze SUCNR1 expression in the intestine of Crohn's disease patients and its role in murine intestinal inflammation and fibrosis. We show that both serum and intestinal succinate levels and SUCNR1 expression in intestinal surgical resections were higher in CD patients than in controls. SUCNR1 co-localized with CD86, CD206, and α-SMA+ cells in human intestine and we found a positive and significant correlation between SUCNR1 and α-SMA expression. In human isolated fibroblasts from CD patients SUCNR1 expression was higher than in those from controls and treatment with succinate increased SUCNR1 expression, fibrotic markers and inflammatory cytokines through SUCNR1. This receptor modulated the expression of pro-inflammatory cytokines in resting murine macrophages, macrophage polarization and fibroblast activation and Sucnr1−/− mice were protected against both acute TNBS-colitis and intestinal fibrosis induced by the heterotopic transplant of colonic tissue. We demonstrate increased succinate levels in serum and SUCNR1 expression in intestinal tissue of CD patients and show a role for SUCNR1 in murine intestinal inflammation and fibrosis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

  2. 2.

    Rieder, F., Zimmermann, E. M., Remzi, F. H. & Sandborn, W. J. Crohn’s disease complicated by strictures: a systematic review. Gut 62, 1072–1084 (2013).

  3. 3.

    Li, C. & Kuemmerle, J. F. Mechanisms that mediate the development of fibrosis in patients with Crohn’s disease. Inflam. Bowel Dis. 20, 1250–1258 (2014).

  4. 4.

    Rieder, F., Fiocchi, C. & Rogler, G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology 152, 340–350 e346 (2017).

  5. 5.

    Mills, E. & O’neill, L. A. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 24, 313–320 (2014).

  6. 6.

    Corcoran, S. E. & O’neill, L. A. HIF1alpha and metabolic reprogramming in inflammation. J. Clin. Invest. 126, 3699–3707 (2016).

  7. 7.

    Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238–242 (2013).

  8. 8.

    Li, Y. H., Woo, S. H., Choi, D. H. & Cho, E. H. Succinate causes alpha-SMA production through GPR91 activation in hepatic stellate cells. Biochem. Biophys. Res. Commun. 463, 853–858 (2015).

  9. 9.

    Xie, N. et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care. Med. 192, 1462–1474 (2015).

  10. 10.

    Vallee, A., Lecarpentier, Y. & Vallee, J. N. Thermodynamic aspects and reprogramming cellular energy metabolism during the fibrosis process. Int. J. Mol. Sci. 18, 2537 (2017).

  11. 11.

    Gilissen, J., Jouret, F., Pirotte, B. & Hanson, J. Insight into SUCNR1 (GPR91) structure and function. Pharmacol. Ther. 159, 56–65 (2016).

  12. 12.

    Tan, J. K., Mckenzie, C., Marino, E., Macia, L. & Mackay, C. R. Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu. Rev. Immunol. 35, 371–402 (2017).

  13. 13.

    De Castro Fonseca, M., Aguiar, C. J., Da Rocha Franco, J. A., Gingold, R. N. & Leite, M. F. GPR91: expanding the frontiers of Krebs cycle intermediates. Cell Commun. Signal. 14, 3 (2016).

  14. 14.

    Rubic, T. et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat. Immunol. 9, 1261–1269 (2008).

  15. 15.

    Littlewood-Evans, A. et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med. 213, 1655–1662 (2016).

  16. 16.

    Van Diepen, J. A. et al. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia 60, 1304–1313 (2017).

  17. 17.

    Serena, C. et al. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J 12, 1642–1657 (2018).

  18. 18.

    Le, C. T., Nguyen, G., Park, S. Y., Choi, D. H. & Cho, E. H. LY2405319, an analog of fibroblast growth factor 21 ameliorates alpha-smooth muscle actin production through inhibition of the succinate-G-protein couple receptor 91 (GPR91) pathway in mice. PLoS ONE 13, e0192146 (2018).

  19. 19.

    Ariza, A. C., Deen, P. M. & Robben, J. H. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front. Endocrinol. 3, 22 (2012).

  20. 20.

    Shiomi, Y. et al. GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium. Inflam. Bowel Dis. 17, 2261–2274 (2011).

  21. 21.

    Osaka, T. et al. Meta-analysis of fecal microbiota and metabolites in experimental colitic mice during the inflammatory and healing phases. Nutrients 9, 1329 (2017).

  22. 22.

    Lissner, D. et al. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflam. Bowel Dis. 21, 1297–1305 (2015).

  23. 23.

    Cosin-Roger, J. et al. The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD. Mucosal Immunol. 9, 986–998 (2016).

  24. 24.

    Rogler, G. & Hausmann, M. Factors promoting development of fibrosis in Crohn’s disease. Front. Med. 4, 96 (2017).

  25. 25.

    Rieder, F., Kessler, S., Sans, M. & Fiocchi, C. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G786–G801 (2012).

  26. 26.

    Goffin, L. et al. Anti-MMP-9 antibody: a promising therapeutic strategy for treatment of inflammatory bowel disease complications with fibrosis. Inflam. Bowel Dis. 22, 2041–2057 (2016).

  27. 27.

    Meier, R. et al. Decreased fibrogenesis after treatment with pirfenidone in a newly developed mouse model of intestinal fibrosis. Inflam. Bowel Dis. 22, 569–582 (2016).

  28. 28.

    Salvador, P. et al. CD16+ macrophages mediate fibrosis in inflammatory bowel disease. J. Crohns Colitis  12, 589–599 (2018).

  29. 29.

    Lawrance, I. C. et al. Cellular and molecular mediators of intestinal fibrosis. J. Crohns Colitis 11, 1491–1503 (2017).

  30. 30.

    Bernard, K. et al. Glutaminolysis is required for transforming growth factor-beta1-induced myofibroblast differentiation and activation. J. Biol. Chem. 293, 1218–1228 (2018).

  31. 31.

    Mccreath, K. J. et al. Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes 64, 1154–1167 (2015).

  32. 32.

    Cosin-Roger, J. et al. M2 macrophages activate WNT signaling pathway in epithelial cells: relevance in ulcerative colitis. PLoS ONE 8, e78128 (2013).

  33. 33.

    Ortiz-Masia, D. et al. Hypoxic macrophages impair autophagy in epithelial cells through Wnt1: relevance in IBD. Mucosal Immunol. 7, 929–938 (2014).

  34. 34.

    Macias-Ceja, D. C. et al. Stimulation of autophagy prevents intestinal mucosal inflammation and ameliorates murine colitis. Br. J. Pharmacol. 174, 2501–2511 (2017).

  35. 35.

    Ortiz-Masia, D. et al. Induction of CD36 and thrombospondin-1 in macrophages by hypoxia-inducible factor 1 and its relevance in the inflammatory process. PLoS One 7, e48535 (2012).

  36. 36.

    Monleon, D. et al. Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomed. 22, 342–348 (2009).

  37. 37.

    Bodi, V. et al. Metabolomic profile of human myocardial ischemia by nuclear magnetic resonance spectroscopy of peripheral blood serum: a translational study based on transient coronary occlusion models. J. Am. Coll. Cardiol. 59, 1629–1641 (2012).

  38. 38.

    Garcia-Simon, M. et al. Prognosis biomarkers of severe sepsis and septic shock by 1H NMR urine metabolomics in the intensive care unit. PLoS ONE 10, e0140993 (2015).

Download references


This work was supported by the Ministerio de Economia, Industria y Competitividad and the European Regional Development fund of the European Union (ERDF) (SAF2016-80072P), CIBERehd (CB06/04/0071), and Generalitat Valenciana [PROMETEOII/2014/035, UGP-14-164, GV/2018/041].

Author's contributions

M.D.B., S.C., D.C.M.-C., J.C.-R., C.H., conceived the experiments and analyzed the data. M.D.B., S.C. wrote the manuscript. D.C.M.-C., J.C.-R., P.S., D.O.-M., L.G.-F., conducted the experiments. J.H., R.A., and F.L., provided human CD tissue samples and provided intellectual input. M.H., G.R., and J.V.E. provided intellectual input. All authors reviewed the manuscript.

Author information

Author notes

  1. These authors contributed equally: Dulce C. Macias-Ceja, Dolores Ortiz-Masiá, Sara Calatayud, María D. Barrachina.


  1. Hospital Dr Peset, FISABIO, Valencia, Spain

    • Dulce C. Macias-Ceja
    • , Carlos Hernández
    • , Juan V. Esplugues
    •  & Jesus Cosin-Roger
  2. Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain

    • Dolores Ortiz-Masiá
  3. Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain

    • Pedro Salvador
    • , Laura Gisbert-Ferrándiz
    • , Juan V. Esplugues
    • , Sara Calatayud
    •  & María D. Barrachina
  4. Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland

    • Martin Hausmann
    •  & Gerhard Rogler
  5. Hospital de Manises, Valencia, Spain

    • Joaquín Hinojosa
    •  & Francisco Navarro
  6. Hospital De Sagunto, Valencia, Spain

    • Rafael Alós


  1. Search for Dulce C. Macias-Ceja in:

  2. Search for Dolores Ortiz-Masiá in:

  3. Search for Pedro Salvador in:

  4. Search for Laura Gisbert-Ferrándiz in:

  5. Search for Carlos Hernández in:

  6. Search for Martin Hausmann in:

  7. Search for Gerhard Rogler in:

  8. Search for Juan V. Esplugues in:

  9. Search for Joaquín Hinojosa in:

  10. Search for Rafael Alós in:

  11. Search for Francisco Navarro in:

  12. Search for Jesus Cosin-Roger in:

  13. Search for Sara Calatayud in:

  14. Search for María D. Barrachina in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Jesus Cosin-Roger.

Electronic supplementary material

About this article

Publication history