Review Article | Published:

Human intraepithelial lymphocytes

Mucosal Immunology (2018) | Download Citation



The location of intraepithelial lymphocytes (IEL) between epithelial cells, their effector memory, cytolytic and inflammatory phenotype positions them to kill infected epithelial cells and protect the intestine against pathogens. Human TCRαβ+CD8αβ+ IEL have the dual capacity to recognize modified self via natural killer (NK) receptors (autoreactivity) as well as foreign antigen via the T cell receptor (TCR), which is accomplished in mouse by two cell subsets, the naturally occurring TCRαβ+CD8αα+ and adaptively induced TCRαβ+CD8αβ+ IEL subsets, respectively. The private/oligoclonal nature of the TCR repertoire of both human and mouse IEL suggests local environmental factors dictate the specificity of IEL responses. The line between sensing of foreign antigens and autoreactivity is blurred for IEL in celiac disease, where recognition of stress ligands by induced activating NK receptors in conjunction with inflammatory signals such as IL-15 can result in low-affinity TCR/non-cognate antigen and NK receptor/stress ligand interactions triggering destruction of intestinal epithelial cells.

  • Subscribe to Mucosal Immunology for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    Cheng, Y. et al. Principles of regulatory information conservation between mouse and human. Nature 515, 371–375 (2014).

  2. 2.

    Fichtelius, K. E. The mammalian equivalent to bursa Fabricii of birds. Exp. Cell Res. 46, 231–234 (1967).

  3. 3.

    Guy-Grand, D., Griscelli, C. & Vassalli, P. The gut-associated lymphoid system: nature and properties of the large dividing cells. Eur. J. Immunol. 4, 435–443 (1974).

  4. 4.

    Ferguson, A. & Murray, D. Quantitation of intraepithelial lymphocytes in human jejunum. Gut 12, 988–994 (1971).

  5. 5.

    Ferguson, A. Intraepithelial lymphocytes of the small intestine. Gut 18, 921–937 (1977).

  6. 6.

    Holmes, G. K., Asquith, P., Stokes, P. L. & Cooke, W. T. Cellular infiltrate of jejunal biopsies in adult coeliac disease in relation to gluten withdrawal. Gut 15, 278–283 (1974).

  7. 7.

    Ferguson, R., Asquith, P. & Cooke, W. T. The jejunal cellular infiltrate in coeliac disease complicated by lymphoma. Gut 15, 458–461 (1974).

  8. 8.

    Montgomery, R. D. & Shearer, A. C. The cell population of the upper jejunal mucosa in tropical sprue and postinfective malabsorption. Gut 15, 387–391 (1974).

  9. 9.

    Cerf-Bensussan, N. & Guy-Grand, D. Intestinal intraepithelial lymphocytes. Gastroenterol. Clin. North Am. 20, 549–576 (1991).

  10. 10.

    Lefrancois, L., Fuller, B., Huleatt, J. W., Olson, S. & Puddington, L. On the front lines: intraepithelial lymphocytes as primary effectors of intestinal immunity. Springer Semin. Immunopathol. 18, 463–475 (1997).

  11. 11.

    Hayday, A., Theodoridis, E., Ramsburg, E. & Shires, J. Intraepithelial lymphocytes: exploring the third way in immunology. Nat. Immunol. 2, 997–1003 (2001).

  12. 12.

    Guy-Grand, D. & Vassalli, P. Gut intraepithelial lymphocyte development. Curr. Opin. Immunol. 14, 255–259 (2002).

  13. 13.

    Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

  14. 14.

    Jarry, A., Cerf-Bensussan, N., Brousse, N., Selz, F. & Guy-Grand, D. Subsets of CD3+ (T cell receptor α/β or ɣ/δ) and CD3 lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur. J. Immunol. 20, 1097–1103 (1990).

  15. 15.

    Mowat, A. M. Human intraepithelial lymphocytes. Springer Semin. Immunopathol. 12, 165–190 (1990).

  16. 16.

    Abadie, V., Discepolo, V. & Jabri, B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin. Immunopathol. 34, 551–566 (2012).

  17. 17.

    Shires, J., Theodoridis, E. & Hayday, A. C. Biological insights into TCRɣδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

  18. 18.

    Fahrer, A. M. et al. Attributes of ɣδ intraepithelial lymphocytes as suggested by their transcriptional profile. Proc. Natl Acad. Sci. USA 98, 10261–10266 (2001).

  19. 19.

    Bandeira, A. et al. Localization of ɣ/δ T cells to the intestinal epithelium is independent of normal microbial colonization. J. Exp. Med. 172, 239–244 (1990).

  20. 20.

    Kawaguchi, M. et al. Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and determined by T cells expressing ɣδ T-cell antigen receptors. Proc. Natl Acad. Sci. USA 90, 8591–8594 (1993).

  21. 21.

    Kuo, S., Guindy, El,A., Panwala, C. M., Hagan, P. M. & Camerini, V. Differential appearance of T cell subsets in the large and small intestine of neonatal mice. Pediatr. Res. 49, 543–551 (2001).

  22. 22.

    Di Marco Barros, R. et al. Epithelia use butyrophilin-like molecules to shape organ-specific ɣδ T cell compartments. Cell 167, 203–218.e17 (2016).

  23. 23.

    Umesaki, Y., Setoyama, H., Matsumoto, S. & Okada, Y. Expansion of αβ T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79, 32–37 (1993).

  24. 24.

    Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).

  25. 25.

    Sugahara, S. et al. Extrathymic derivation of gut lymphocytes in parabiotic mice. Immunology 96, 57–65 (1999).

  26. 26.

    Cerf-Bensussan, N., Guy-Grand, D., Lisowska-Grospierre, B., Griscelli, C. & Bhan, A. K. A monoclonal antibody specific for rat intestinal lymphocytes. J. Immunol. 136, 76–82 (1986).

  27. 27.

    Cerf-Bensussan, N. et al. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur. J. Immunol. 17, 1279–1285 (1987).

  28. 28.

    Melgar, S., Bas, A., Hammarström, S. & Hammarström, M.-L. Human small intestinal mucosa harbours a small population of cytolytically active CD8+ αβ T lymphocytes. Immunology 106, 476–485 (2002).

  29. 29.

    Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

  30. 30.

    Boll, G., Rudolphi, A., Spiess, S. & Reimann, J. Regional specialization of intraepithelial T cells in the murine small and large intestine. Scand. J. Immunol. 41, 103–113 (1995).

  31. 31.

    Beagley, K. W. et al. Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestine. J. Immunol. 154, 5611–5619 (1995).

  32. 32.

    Camerini, V., Panwala, C. & Kronenberg, M. Regional specialization of the mucosal immune system. Intraepithelial lymphocytes of the large intestine have a different phenotype and function than those of the small intestine. J. Immunol. 151, 1765–1776 (1993).

  33. 33.

    Lundqvist, C., Baranov, V., Hammarström, S., Athlin, L. & Hammarström, M. L. Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. Int. Immunol. 7, 1473–1487 (1995).

  34. 34.

    Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

  35. 35.

    Latthe, M., Terry, L. & MacDonald, T. T. High frequency of CD8 αα homodimer-bearing T cells in human fetal intestine. Eur. J. Immunol. 24, 1703–1705 (1994).

  36. 36.

    Verstichel, G. et al. The checkpoint for agonist selection precedes conventional selection in human thymus. Sci. Immunol. 2, 1–11 (2017).

  37. 37.

    Guy-Grand, D., Cuénod-Jabri, B., Malassis-Seris, M., Selz, F. & Vassalli, P. Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. Eur. J. Immunol. 26, 2248–2256 (1996).

  38. 38.

    McDonald, B. D., Bunker, J. J., Ishizuka, I. E., Jabri, B. & Bendelac, A. Elevated T cell receptor signaling identifies a thymic precursor to the TCRαβ+CD4CD8β intraepithelial lymphocyte lineage. Immunity 41, 219–229 (2014).

  39. 39.

    Lefrancois, L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J. Immunol. 147, 1746–1751 (1991).

  40. 40.

    Mucida, D. et al. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14, 281–289 (2013).

  41. 41.

    Reis, B. S., Rogoz, A., Costa-Pinto, F. A., Taniuchi, I. & Mucida, D. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 14, 271–280 (2013).

  42. 42.

    Atuma, C., Strugala, V., Allen, A. & Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G922–G929 (2001).

  43. 43.

    Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

  44. 44.

    Denning, T. L. et al. Mouse TCRαβ+CD8αα intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J. Immunol. 178, 4230–4239 (2007).

  45. 45.

    Barrett, T. A. et al. Differential function of intestinal intraepithelial lymphocyte subsets. J. Immunol. 149, 1124–1130 (1992).

  46. 46.

    Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004).

  47. 47.

    Hüe, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004).

  48. 48.

    Jabri, B. et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 118, 867–879 (2000).

  49. 49.

    Jabri, B. et al. TCR specificity dictates CD94/NKG2A expression by human CTL. Immunity 17, 487–499 (2002).

  50. 50.

    Lundqvist, C., Melgar, S., Yeung, M. M., Hammarström, S. & Hammarström, M. L. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J. Immunol. 157, 1926–1934 (1996).

  51. 51.

    Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

  52. 52.

    Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial ɣδ T cells. Science 279, 1737–1740 (1998).

  53. 53.

    Rahim, M. M. A. & Makrigiannis, A. P. Ly49 receptors: evolution, genetic diversity, and impact on immunity. Immunol. Rev. 267, 137–147 (2015).

  54. 54.

    Rosen, D. B. et al. A structural basis for the association of DAP12 with mouse, but not human, NKG2D. J. Immunol. 173, 2470–2478 (2004).

  55. 55.

    Tjon, J. M.-L., van Bergen, J. & Koning, F. Celiac disease: how complicated can it get? Immunogenetics 62, 641–651 (2010).

  56. 56.

    Meresse, B. et al. Reprogramming of CTLs into natural killer-like cells in celiac disease. J. Exp. Med. 203, 1343–1355 (2006).

  57. 57.

    Regnault, A., Cumano, A., Vassalli, P., Guy-Grand, D. & Kourilsky, P. Oligoclonal repertoire of the CD8αα and the CD8αβ TCR-α/β murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J. Exp. Med. 180, 1345–1358 (1994).

  58. 58.

    Arstila, T. et al. Identical T cell clones are located within the mouse gut epithelium and lamina propia and circulate in the thoracic duct lymph. J. Exp. Med. 191, 823–834 (2000).

  59. 59.

    Mayans, S. et al. αβT cell receptors expressed by CD4(-)CD8αβ(-) intraepithelial T cells drive their fate into a unique lineage with unusual MHC reactivities. Immunity 41, 207–218 (2014).

  60. 60.

    Rocha, B., Boehmer, von, H. & Guy-Grand, D. Selection of intraepithelial lymphocytes with CD8 α/α co-receptors by self-antigen in the murine gut. Proc. Natl Acad. Sci. USA 89, 5336–5340 (1992).

  61. 61.

    Helgeland, L. et al. Microbial colonization induces oligoclonal expansions of intraepithelial CD8 T cells in the gut. Eur. J. Immunol. 34, 3389–3400 (2004).

  62. 62.

    Suzuki, H., Duncan, G. S., Takimoto, H. & Mak, T. W. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J. Exp. Med. 185, 499–505 (1997).

  63. 63.

    Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

  64. 64.

    Russell, S. M. & Nicoll, C. S. Evolution of growth hormone and prolactin receptors and effectors. Prog. Clin. Biol. Res. 342, 168–173 (1990).

  65. 65.

    Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

  66. 66.

    Balk, S. P. et al. Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science 253, 1411–1415 (1991).

  67. 67.

    Van Kerckhove, C. et al. Oligoclonality of human intestinal intraepithelial T cells. J. Exp. Med. 175, 57–63 (1992).

  68. 68.

    Busch, D. H., Pilip, I. & Pamer, E. G. Evolution of a complex T cell receptor repertoire during primary and recall bacterial infection. J. Exp. Med. 188, 61–70 (1998).

  69. 69.

    Halstensen, T. S. & Brandtzaeg, P. Activated T lymphocytes in the celiac lesion: non-proliferative activation (CD25) of CD4+ α/β cells in the lamina propria but proliferation (Ki-67) of α/β and ɣ/δ cells in the epithelium. Eur. J. Immunol. 23, 505–510 (1993).

  70. 70.

    Darlington, D. & Rogers, A. W. Epithelial lymphocytes in the small intestine of the mouse. J. Anat. 100, 813–830 (1966).

  71. 71.

    Guy-Grand, D. et al. Origin, trafficking, and intraepithelial fate of gut-tropic T cells. J. Exp. Med. 210, 1839–1854 (2013).

  72. 72.

    Marsh, M. N. Studies of intestinal lymphoid tissue. I. Electron microscopic evidence of ‘blast transformation’ in epithelial lymphocytes of mouse small intestinal mucosa. Gut 16, 665–674 (1975).

  73. 73.

    Park, S. H. et al. Selection and expansion of CD8α/α+ T cell receptor α/β+ intestinal intraepithelial lymphocytes in the absence of both classical major histocompatibility complex class I and nonclassical CD1 molecules. J. Exp. Med. 190, 885–890 (1999).

  74. 74.

    Das, G. & Janeway, C. A. Development of Cd8α/α and Cd8α/β T cells in major histocompatibility complex class I-deficient mice. J. Exp. Med. 190, 881–884 (1999).

  75. 75.

    Gapin, L., Cheroutre, H. & Kronenberg, M. Cutting edge: TCRαβ+ CD8αα+ T cells are found in intestinal intraepithelial lymphocytes of mice that lack classical MHC class I molecules. J. Immunol. 163, 4100–4104 (1999).

  76. 76.

    McDonald, B. D., Bunker, J. J., Erickson, S. A., Oh-Hora, M. & Bendelac, A. Crossreactive αβ T cell receptors are the predominant targets of thymocyte negative selection. Immunity 43, 859–869 (2015).

  77. 77.

    Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nat. Immunol. 5, 597–605 (2004).

  78. 78.

    Zhou, R., Wei, H., Sun, R., Zhang, J. & Tian, Z. NKG2D recognition mediates Toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice. Proc. Natl Acad. Sci. USA 104, 7512–7515 (2007).

  79. 79.

    Cheroutre, H. & Lambolez, F. Doubting the TCR coreceptor function of CD8αα. Immunity 28, 149–159 (2008).

  80. 80.

    Tang, F. et al. Interleukin 15 primes natural killer cells to kill via NKG2D and cPLA2 and this pathway is active in psoriatic arthritis. PLoS ONE 8, e76292 (2013).

  81. 81.

    Jabri, B. & Abadie, V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 15, 771–783 (2015).

  82. 82.

    Liu, R. B. et al. IL-15 in tumor microenvironment causes rejection of large established tumors by T cells in a noncognate T cell receptor-dependent manner. Proc. Natl Acad. Sci. USA 110, 8158–8163 (2013).

  83. 83.

    Deshpande, P. et al. IL-7- and IL-15-mediated TCR sensitization enables T cell responses to self-antigens. J. Immunol. 190, 1416–1423 (2013).

  84. 84.

    Green, P. H. R. & Jabri, B. Coeliac disease. Lancet 362, 383–391 (2003).

  85. 85.

    Girardi, M. et al. Regulation of cutaneous malignancy by ɣδ T cells. Science 294, 605–609 (2001).

  86. 86.

    Ernst, P. B., Clark, D. A., Rosenthal, K. L., Befus, A. D. & Bienenstock, J. Detection and characterization of cytotoxic T lymphocyte precursors in the murine intestinal intraepithelial leukocyte population. J. Immunol. 136, 2121–2126 (1986).

  87. 87.

    Emoto, M., Neuhaus, O., Emoto, Y. & Kaufmann, S. H. Influence of β2-microglobulin expression on gamma interferon secretion and target cell lysis by intraepithelial lymphocytes during intestinal Listeria monocytogenes infection. Infect. Immun. 64, 569–575 (1996).

  88. 88.

    Muller, S., Buhler-Jungo, M. & Mueller, C. Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during an acute virus infection. J. Immunol. 164, 1986–1994 (2000).

  89. 89.

    Chardès, T., Buzoni-Gatel, D., Lepage, A., Bernard, F. & Bout, D. Toxoplasma gondii oral infection induces specific cytotoxic CD8α/β+ Thy-1+ gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J. Immunol. 153, 4596–4603 (1994).

  90. 90.

    Poussier, P., Ning, T., Banerjee, D. & Julius, M. A unique subset of self-specific intraintestinal T cells maintains gut integrity. J. Exp. Med. 195, 1491–1497 (2002).

  91. 91.

    Roberts, S. J. et al. T-cell αβ+ and ɣδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc. Natl Acad. Sci. USA 93, 11774–11779 (1996).

  92. 92.

    Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial ɣδ T cells. Science 266, 1253–1255 (1994).

  93. 93.

    Hoytema van Konijnenburg, D. P. et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 171, 783–794.e13 (2017).

  94. 94.

    Pope, C. et al. Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J. Immunol. 166, 3402–3409 (2001).

  95. 95.

    Masopust, D., Jiang, J., Shen, H. & Lefrançois, L. Direct analysis of the dynamics of the intestinal mucosa CD8 T cell response to systemic virus infection. J. Immunol. 166, 2348–2356 (2001).

  96. 96.

    Lepage, A. C., Buzoni-Gatel, D., Bout, D. T. & Kasper, L. H. Gut-derived intraepithelial lymphocytes induce long term immunity against Toxoplasma gondii. J. Immunol. 161, 4902–4908 (1998).

  97. 97.

    MacDonald, T. T. & Ferguson, A. Hypersensitivity reactions in the small intestine. 2. Effects of allograft rejection on mucosal architecture and lymphoid cell infiltrate. Gut 17, 81–91 (1976).

  98. 98.

    Jabri, B. & Sollid, L. M. Tissue-mediated control of immunopathology in coeliac disease. Nat. Rev. Immunol. 9, 858–870 (2009).

  99. 99.

    Vezys, V., Olson, S. & Lefrancois, L. Expression of intestine-specific antigen reveals novel pathways of CD8 T cell tolerance induction. Immunity 12, 505–514 (2000).

  100. 100.

    MacDonald, T. T. & Spencer, J. Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J. Exp. Med. 167, 1341–1349 (1988).

  101. 101.

    Meresse, B., Malamut, G. & Cerf-Bensussan, N. Celiac disease: an immunological jigsaw. Immunity 36, 907–919 (2012).

  102. 102.

    Marsh, M.N. & Heal, C.J. Evolutionary developments in interpreting the gluten-induced mucosal celiac lesion: an archimedian heuristic. Nutrients 9, 1–20 (2017).

  103. 103.

    Sollid, L. M. Coeliac disease: dissecting a complex inflammatory disorder. Nat. Rev. Immunol. 2, 647–655 (2002).

  104. 104.

    Buzzetti, R., Zampetti, S. & Maddaloni, E. Adult-onset autoimmune diabetes: current knowledge and implications for management. Nat. Rev. Endocrinol. 13, 674–686 (2017).

  105. 105.

    Chen, J. et al. Insulin-dependent diabetes induced by pancreatic beta cell expression of IL-15 and IL-15Rα. Proc. Natl Acad. Sci. USA 110, 13534–13539 (2013).

  106. 106.

    Kaukinen, K., Collin, P. & Mäki, M. Latent coeliac disease or coeliac disease beyond villous atrophy? Gut 56, 1339–1340 (2007).

  107. 107.

    Tosco, A. et al. Natural history of potential celiac disease in children. Clin. Gastroenterol. Hepatol. 9, 320–325 quiz e36 (2011).

  108. 108.

    Setty, M. et al. Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology 149, 681–691.e10 (2015).

  109. 109.

    de Kauwe, A. L. et al. Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. J. Immunol. 182, 7440–7450 (2009).

  110. 110.

    Marietta, E. et al. A new model for dermatitis herpetiformis that uses HLA-DQ8 transgenic NOD mice. J. Clin. Invest. 114, 1090–1097 (2004).

  111. 111.

    DePaolo, R. W. et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471, 220–224 (2011).

  112. 112.

    Yokoyama, S. et al. Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc. Natl Acad. Sci. USA 106, 15849–15854 (2009).

  113. 113.

    Cellier, C. et al. Abnormal intestinal intraepithelial lymphocytes in refractory sprue. Gastroenterology 114, 471–481 (1998).

  114. 114.

    Tjon, J. M. L. et al. Defective synthesis or association of T-cell receptor chains underlies loss of surface T-cell receptor-CD3 expression in enteropathy-associated T-cell lymphoma. Blood 112, 5103–5110 (2008).

  115. 115.

    Ettersperger, J. et al. Interleukin-15-dependent T-cell-like innate intraepithelial lymphocytes develop in the intestine and transform into lymphomas in celiac disease. Immunity 45, 610–625 (2016).

  116. 116.

    Abadie, V. & Jabri, B. IL-15: a central regulator of celiac disease immunopathology. Immunol. Rev. 260, 221–234 (2014).

  117. 117.

    Meresse, B., Korneychuk, N., Malamut, G. & Cerf-Bensussan, N. Interleukin-15, a master piece in the immunological jigsaw of celiac disease. Dig. Dis. 33, 122–130 (2015).

  118. 118.

    Korneychuk, N. et al. Interleukin 15 and CD4+ T cells cooperate to promote small intestinal enteropathy in response to dietary antigen. Gastroenterology 146, 1017–1027 (2014).

Download references


Support for this work was provided by grants from the US National Institutes of Health (RO1DK67180 and R01DK098435) and Digestive Diseases Research Core Center at the University of Chicago (DK42086). We would like to thank Valérie Abadie for contributions made to figure art and design and Jordan D. Ernest for assistance with experiments. A special thanks to Zachery M. Earley, Sangman M. Kim, and Marlies Meisel for sharing various data and ideas on mouse IEL that were critical to establishing comparisons between human and mouse. Finally, we are thankful to the human subjects providing us with material to examine human IEL.

Author information


  1. Department of Medicine, University of Chicago, Chicago, USA

    • Toufic Mayassi
    •  & Bana Jabri
  2. Committee on Immunology, University of Chicago, Chicago, USA

    • Toufic Mayassi
    •  & Bana Jabri
  3. Department of Pathology, University of Chicago, Chicago, USA

    • Bana Jabri
  4. Department of Pediatrics, University of Chicago, Chicago, USA

    • Bana Jabri


  1. Search for Toufic Mayassi in:

  2. Search for Bana Jabri in:


T.M. and B.J. designed experiments. T.M. conducted experiments. T.M. and B.J. designed figures. T.M. and B.J. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Bana Jabri.

About this article

Publication history






Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.