Article | Published:

B cells are the predominant mediators of early systemic viral dissemination during rectal LCMV infection


Determining the magnitude of local immune response during mucosal exposure to viral pathogens is critical to understanding the mechanism of viral pathogenesis. We previously showed that vaginal inoculation of lymphocytic choriomeningitis virus (LCMV) fails to induce a robust innate immune response in the lower female reproductive tract (FRT), allowing high titer viral replication and a delay in T-cell-mediated viral control. Despite this immunological delay, LCMV replication remained confined mainly to the FRT and the draining iliac lymph node. Here, we show that rectal infection with LCMV triggers type I/III interferon responses, followed by innate immune activation and lymphocyte recruitment to the colon. In contrast to vaginal exposure, innate immunity controls LCMV replication in the colon, but virus rapidly disseminates systemically. Virus-induced inflammation promotes the recruitment of LCMV target cells to the colon followed by splenic viral dissemination by infected B cells, and to a lesser extent by CD8 T cells. These findings demonstrate major immunological differences between vaginal and rectal exposure to the same viral pathogen, highlighting unique risks associated with each of these common routes of sexual viral transmission.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Lycke, N. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 12, 592–605 (2012).

  2. 2.

    Sewald, X., Motamedi, N. & Mothes, W. Viruses exploit the tissue physiology of the host to spread in vivo. Curr. Opin. Cell. Biol. 41, 81–90 (2016).

  3. 3.

    Shaw G. M., Hunter E. HIV transmission. Cold Spring Harb. Perspect. Med. 2:a006965, 1-23 (2012).

  4. 4.

    Patel, P. et al. Estimating per-act HIV transmission risk: a systematic review. AIDS 28, 1509–1519 (2014).

  5. 5.

    Sansonetti, P. J. & Medzhitov, R. Learning tolerance while fighting ignorance. Cell 138, 416–420 (2009).

  6. 6.

    Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

  7. 7.

    Zhou, X., Ramachandran, S., Mann, M. & Popkin, D. L. Role of lymphocytic choriomeningitis virus (LCMV) in understanding viral immunology: past, present and future. Viruses 4, 2650–2669 (2012).

  8. 8.

    Barton, L. L., Mets, M. B. & Beauchamp, C. L. Lymphocytic choriomeningitis virus: emerging fetal teratogen. Am. J. Obstet. Gynecol. 187, 1715–1716 (2002).

  9. 9.

    Khan, S. et al. Dampened antiviral immunity to intravaginal exposure to RNA viral pathogens allows enhanced viral replication. J. Exp. Med. 213, 2913–2929 (2016).

  10. 10.

    Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

  11. 11.

    Houston, S. A. et al. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 9, 468–478 (2016).

  12. 12.

    Ribeiro Dos Santos, P. et al. Rapid dissemination of SIV follows multisite entry after rectal inoculation. PLoS ONE 6, e19493 (2011).

  13. 13.

    Lu, W. et al. Virus-host mucosal interactions during early SIV rectal transmission. Virology 464-465, 406–414 (2014).

  14. 14.

    Haddow A. D. et al. High infection rates for adult macaques after intravaginal or intrarectal inoculation with Zika virus. Emerg. Infect. Dis. 23, 1274–1281 (2017).

  15. 15.

    Butz, E. A. & Bevan, M. J. Massive expansion of antigen-specific CD8+T cells during an acute virus infection. Immunity 8, 167–175 (1998).

  16. 16.

    Matloubian, M., Concepcion, R. J. & Ahmed, R. CD4+T cells are required to sustain CD8+cytotoxic T-cell responses during chronic viral infection. J. Virol. 68, 8056–8063 (1994).

  17. 17.

    Pircher, H. et al. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature 346, 629–633 (1990).

  18. 18.

    Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

  19. 19.

    Clingan, J. M., Ostrow, K., Hosiawa, K. A., Chen, Z. J. & Matloubian, M. Differential roles for RIG-I-like receptors and nucleic acid-sensing TLR pathways in controlling a chronic viral infection. J. Immunol. 188, 4432–4440 (2012).

  20. 20.

    Griffith, J. W., Sokol, C. L. & Luster, A. D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 32, 659–702 (2014).

  21. 21.

    King, C. C., de Fries, R., Kolhekar, S. R. & Ahmed, R. In vivo selection of lymphocyte-tropic and macrophage-tropic variants of lymphocytic choriomeningitis virus during persistent infection. J. Virol. 64, 5611–5616 (1990).

  22. 22.

    Emonet, S. F., Garidou, L., McGavern, D. B. & de la Torre, J. C. Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. Proc. Natl. Acad. Sci. USA 106, 3473–3478 (2009).

  23. 23.

    Paludan S. R. Innate antiviral defenses independent of inducible IFNalpha/beta production. Trends Immunol. 37, 588-596 (2016).

  24. 24.

    Pott, J. & Stockinger, S. Type I and III interferon in the gut: tight balance between host protection and immunopathology. Front. Immunol. 8, 258 (2017).

  25. 25.

    Trinchieri, G. Type I interferon: friend or foe? J. Exp. Med. 207, 2053–2063 (2010).

  26. 26.

    Haase, A. T. Early events in sexual transmission of HIV and SIV and opportunities for interventions. Annu. Rev. Med. 62, 127–139 (2011).

  27. 27.

    Deruaz, M. et al. Chemoattractant-mediated leukocyte trafficking enables HIV dissemination from the genital mucosa. JCI Insight 2, e88533 (2017).

  28. 28.

    Murooka, T. T. et al. HIV-infected T cells are migratory vehicles for viral dissemination. Nature 490, 283–287 (2012).

  29. 29.

    Mena, I. et al. The role of B lymphocytes in coxsackievirus B3 infection. Am. J. Pathol. 155, 1205–1215 (1999).

  30. 30.

    Rayamajhi, M., Delgado, C., Condon, T. V., Riches, D. W. & Lenz, L. L. Lung B cells promote early pathogen dissemination and hasten death from inhalation anthrax. Mucosal Immunol. 5, 444–454 (2012).

  31. 31.

    Bessa, J. et al. Low-affinity B cells transport viral particles from the lung to the spleen to initiate antibody responses. Proc. Natl Acad. Sci. USA 109, 20566–20571 (2012).

  32. 32.

    Malaspina, A. et al. Human immunodeficiency virus type 1 bound to B cells: relationship to virus replicating in CD4 + T cells and circulating in plasma. J. Virol. 76, 8855–8863 (2002).

  33. 33.

    Shimomura, Y. et al. A unique B2 B cell subset in the intestine. J. Exp. Med. 205, 1343–1355 (2008).

  34. 34.

    Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

  35. 35.

    Griesbeck, M., Scully, E. & Altfeld, M. Sex and gender differences in HIV-1 infection. Clin. Sci. (Lond.). 130, 1435–1451 (2016).

  36. 36.

    Jaillon S., Berthenet K., Garlanda C. Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol 2017.

  37. 37.

    Olson, K. et al. Liposomal gD ectodomain (gD1-306) vaccine protects against HSV2 genital or rectal infection of female and male mice. Vaccine 28, 548–560 (2009).

  38. 38.

    Ren, W. et al. Fast disease progression in simian HIV-infected female macaque is accompanied by a robust local inflammatory innate immune and microbial response. AIDS 29, F1–F8 (2015).

  39. 39.

    Berghofer, B. et al. TLR7 ligands induce higher IFN- production in females. J. Immunol. 177, 2088–2096 (2006).

  40. 40.

    Meier, A. et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat. Med. 15, 955–959 (2009).

  41. 41.

    Griesbeck, M. et al. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-alpha production in women. J. Immunol. 195, 5327–5336 (2015).

  42. 42.

    Swiecki, M., Wang, Y., Gilfillan, S. & Colonna, M. Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathog. 9, e1003728 (2013).

  43. 43.

    Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

  44. 44.

    Madsen, L. et al. Mice lacking all conventional MHC class II genes. Proc. Natl Acad. Sci. USA 96, 10338–10343 (1999).

  45. 45.

    Fung-Leung, W. P. et al. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65, 443–449 (1991).

  46. 46.

    Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561 (1997).

  47. 47.

    Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A. B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423–426 (1991).

  48. 48.

    Welsh R. M., Seedhom M. O. Lymphocytic choriomeningitis virus (LCMV): propagation, quantitation, and storage. Curr. Protoc. Microbiol. Chapter 15, Unit 15A.1 (2008).

  49. 49.

    Korns Johnson, D. & Homann, D. Accelerated and improved quantification of lymphocytic choriomeningitis virus (LCMV) titers by flow cytometry. PLoS One 7, e37337 (2012).

  50. 50.

    Reissig, S., Hackenbruch, C. & Hovelmeyer, N. Isolation of T cells from the gut. Methods Mol. Biol. 1193, 21–25 (2014).

  51. 51.

    McCausland, M. M. & Crotty, S. Quantitative PCR technique for detecting lymphocytic choriomeningitis virus in vivo. J. Virol. Methods 147, 167–176 (2008).

Download references


We thank J. C. de la Torre (Scripps) for LCMV-GFP; C. Allen (UCSF) for muMT mice; E. Woodruff, J. Luong, and I. Lew for maintaining animal colonies and technical assistance. We are grateful to W. C. Greene (Gladstone), J. G. Cyster (UCSF), N. R. Roan (UCSF), M. Ott (Gladstone), and K. Fontaine (Gladstone) for critical reading of the manuscript, and to G. Howard (Gladstone) for editorial assistance. This publication was made possible with help from the University of California San Francisco-Gladstone Institute of Virology & Immunology Center for AIDS Research (CFAR), an NIH-funded program (P30 AI027763), NIH S10 RR028962, and the James B. Pendelton Charitable Trust, all supporting the Gladstone Flow Core and cell sorter. The Gladstone Institutes received support for its animal care facility from a National Center for Research Resources grant (RR18928). This work was supported by grants from the National Institutes of Health (DP2 AI112244), a University of California Hellman Award, a Center for AIDS Research (CFAR) Pilot Award (P30 AI027763), and CNIHR (P30 AI027767) to S.S.

Author information

Conceptualization: S.S. and M.T.; Methodology: M.T., B.L.C., S.K., and S.S.; Formal analysis: M.T.; Investigation: M.T., S.K., B.L.C., F.W.; Resources: S.S.; Writing (original draft): S.S. and M.T.; Writing (review and editing): S.S., M.T., S.K.; Visualization: M.T. and S.S; Supervision: S.S. and M.T.; and Funding acquisition: S.S.

Conflict of interest

The authors declare no competing financial interests.

Correspondence to Shomyseh Sanjabi.

Electronic supplementary material

Supplementary Informaion

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6