Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differential DNA methylation in iPSC-derived dopaminergic neurons: a step forward on the role of SNORD116 microdeletion in the pathophysiology of addictive behavior in Prader-Willi syndrome

Abstract

Introduction

A microdeletion including the SNORD116 gene (SNORD116 MD) has been shown to drive the Prader-Willi syndrome (PWS) features. PWS is a neurodevelopmental disorder clinically characterized by endocrine impairment, intellectual disability and psychiatric symptoms such as a lack of emotional regulation, impulsivity, and intense temper tantrums with outbursts. In addition, this syndrome is associated with a nutritional trajectory characterized by addiction-like behavior around food in adulthood. PWS is related to the genetic loss of expression of a minimal region that plays a potential role in epigenetic regulation. Nevertheless, the role of the SNORD116 MD in DNA methylation, as well as the impact of the oxytocin (OXT) on it, have never been investigated in human neurons.

Methods

We studied the methylation marks in induced pluripotent stem-derived dopaminergic neurons carrying a SNORD116 MD in comparison with those from an age-matched adult healthy control. We also performed identical neuron differentiation in the presence of OXT. We performed a genome-wide DNA methylation analysis from the iPSC-derived dopaminergic neurons by reduced-representation bisulfite sequencing. In addition, we performed RNA sequencing analysis in these iPSC-derived dopaminergic neurons differentiated with or without OXT.

Results

The analysis revealed that 153,826 cytosines were differentially methylated between SNORD116 MD neurons and control neurons. Among the differentially methylated genes, we determined a list of genes also differentially expressed. Enrichment analysis of this list encompassed the dopaminergic system with COMT and SLC6A3. COMT displayed hypermethylation and under-expression in SNORD116 MD, and SLC6A3 displayed hypomethylation and over-expression in SNORD116 MD. RT-qPCR confirmed significant over-expression of SLC6A3 in SNORD116 MD neurons. Moreover, the expression of this gene was significantly decreased in the case of OXT adjunction during the differentiation.

Conclusion

SNORD116 MD dopaminergic neurons displayed differential methylation and expression in the COMT and SLC6A3 genes, which are related to dopaminergic clearance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A heatmap representation of the changes in methylation levels observed in genes related to the dopaminergic synapse pathway observed in SNORD116 MD iPSC-derived neurons differentiated with and without OXT and the changes observed for the same genes in the control iPSC-derived neurons differentiated with and without OXT.
Fig. 2: Display of differential methylation and expression.
Fig. 3: Display of RNA expression in SNORD116 and control iPSC-derived dopaminergic neurons.
Fig. 4: Effect of the SNORD116 deletion on gene expression in dopaminergic neurons differentiated from iPSC.

Similar content being viewed by others

Data availability

The RNA sequencing data reported in this article were deposited in the NCBI’s Gene Expression Omnibus (GEO) database: GSE249891.

References

  1. Tauber M, Diene G, Mimoun E, Çabal-Berthoumieu S, Mantoulan C, Molinas C, et al. Prader-Willi syndrome as a model of human hyperphagia. Front Horm Res. 2014;42:93–106.

    Article  PubMed  Google Scholar 

  2. McCandless SE, The Committee on Genetics. Health supervision for children with Prader-Willi syndrome. Pediatrics. 2011;127:195–204.

    Article  PubMed  Google Scholar 

  3. Kendler KS, Neale MC, Sullivan P, Corey LA, Gardner CO, Prescott CA. A population-based twin study in women of smoking initiation and nicotine dependence. Psychol Med. 1999;29:299–308.

    Article  CAS  PubMed  Google Scholar 

  4. Edwards AC, Maes HH, Pedersen NL, Kendler KS. A population-based twin study of the genetic and environmental relationship of major depression, regular tobacco use and nicotine dependence. Psychol Med. 2011;41:395–405.

    Article  CAS  PubMed  Google Scholar 

  5. Edwards AC, Kendler KS. A twin study of depression and nicotine dependence: shared liability or causal relationship? J Affect Disord. 2012;142:90–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bierut LJ. Nicotine dependence and genetic variation in the nicotinic receptors. Drug Alcohol Depend. 2009;104:S64–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kendler KS, Heath AC, Neale MC, Kessler RC, Eaves LJ. A population-based twin study of alcoholism in women. JAMA. 1992;268:1877–82.

    Article  CAS  PubMed  Google Scholar 

  8. Heath AC, Whitfield JB, Madden PA, Bucholz KK, Dinwiddie SH, Slutske WS, et al. Towards a molecular epidemiology of alcohol dependence: analysing the interplay of genetic and environmental risk factors. Br J Psychiatry Suppl. 2001;40:s33–40.

    Article  CAS  PubMed  Google Scholar 

  9. Heath AC, Martin NG. Genetic influences on alcohol consumption patterns and problem drinking: results from the Australian NH&MRC twin panel follow-up survey. Ann N Y Acad Sci. 1994;708:72–85.

    Article  CAS  PubMed  Google Scholar 

  10. Slutske WS, Zhu G, Meier MH, Martin NG. Genetic and environmental influences on disordered gambling in men and women. Arch Gen Psychiatry. 2010;67:624–30.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blum K, Braverman ER, Holder JM, Lubar JF, Monastra VJ, Miller D, et al. Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoact Drugs. 2000;32:1–112.

    Article  Google Scholar 

  12. Lindgren E, Gray K, Miller G, Tyler R, Wiers CE, Volkow ND, et al. Food addiction: a common neurobiological mechanism with drug abuse. Front Biosci Landmark Ed. 2018;23:811–36.

    Article  CAS  PubMed  Google Scholar 

  13. Wang SC, Chen YC, Lee CH, Cheng CM. Opioid addiction, genetic susceptibility, and medical treatments: a review. Int J Mol Sci. 2019;20:4294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Volkow ND, Koob GF, McLellan AT. Neurobiologic advances from the brain disease model of addiction. N Engl J Med. 2016;374:363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ross S, Peselow E. Co-occurring psychotic and addictive disorders: neurobiology and diagnosis. Clin Neuropharmacol. 2012;35:235–43.

    Article  PubMed  Google Scholar 

  16. Maldonado R, Calvé P, García-Blanco A, Domingo-Rodriguez L, Senabre E, Martín-García E. Genomics and epigenomics of addiction. Am J Med Genet B Neuropsychiatr Genet. 2021;186:128–39.

    Article  PubMed  Google Scholar 

  17. Mancino S, Burokas A, Gutiérrez-Cuesta J, Gutiérrez-Martos M, Martín-García E, Pucci M, et al. Epigenetic and proteomic expression changes promoted by eating addictive-like behavior. Neuropsychopharmacology. 2015;40:2788–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Day JJ, Childs D, Guzman-Karlsson MC, Kibe M, Moulden J, Song E, et al. DNA methylation regulates associative reward learning. Nat Neurosci. 2013;16:1445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strathearn L. Maternal neglect: oxytocin, dopamine and the neurobiology of attachment. J Neuroendocrinol. 2011;23:1054–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Insel TR, Young LJ. The neurobiology of attachment. Nat Rev Neurosci. 2001;2:129–36.

    Article  CAS  PubMed  Google Scholar 

  21. Carter CS. The role of oxytocin and vasopressin in attachment. Psychodyn Psychiatry. 2017;45:499–517.

    Article  PubMed  Google Scholar 

  22. Pedersen CA. Oxytocin, tolerance, and the dark side of addiction. Int Rev Neurobiol. 2017;136:239–74.

    Article  CAS  PubMed  Google Scholar 

  23. Whittington J, Holland A. Cognition in people with Prader-Willi syndrome: insights into genetic influences on cognitive and social development. Neurosci Biobehav Rev. 2017;72:153–67.

    Article  PubMed  Google Scholar 

  24. Viaux-Savelon S, Rosenblum O, Guedeney A, Diene G, Çabal-Berthoumieu S, Fichaux-Bourin P, et al. Dyssynchrony and perinatal psychopathology impact of child disease on parents-child interactions, the paradigm of Prader Willi syndrom. J Physiol Paris. 2016;110:427–33.

    Article  PubMed  Google Scholar 

  25. Swaab DF. Prader—Willi syndrome and the hypothalamus. Acta Paediatr. 1997;86:50–4.

    Article  Google Scholar 

  26. Althammer F, Muscatelli F, Grinevich V, Schaaf CP. Oxytocin-based therapies for treatment of Prader-Willi and Schaaf-Yang syndromes: evidence, disappointments, and future research strategies. Transl Psychiatry. 2022;12:318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tauber M, Mantoulan C, Copet P, Jauregui J, Demeer G, Diene G, et al. Oxytocin may be useful to increase trust in others and decrease disruptive behaviours in patients with Prader-Willi syndrome: a randomised placebo-controlled trial in 24 patients. Orphanet J Rare Dis. 2011;6:47.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tauber M, Boulanouar K, Diene G, Çabal-Berthoumieu S, Ehlinger V, Fichaux-Bourin P, et al. The use of oxytocin to improve feeding and social skills in infants with Prader–Willi syndrome. Pediatrics. 2017;139:e20162976.

    Article  PubMed  Google Scholar 

  29. Salles J, Lacassagne E, Eddiry S, Franchitto N, Salles JP, Tauber M. What can we learn from PWS and SNORD116 genes about the pathophysiology of addictive disorders? Mol Psychiatry. 2021;26:51–9.

  30. Bieth E, Eddiry S, Gaston V, Lorenzini F, Buffet A, Conte Auriol F, et al. Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi Syndrome. Eur J Hum Genet EJHG. 2015;23:252–5.

    Article  CAS  PubMed  Google Scholar 

  31. Huang W, Li H, Yu Q, Xiao W, Wang DO. LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Res. 2022;41:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338:1435–9.

    Article  CAS  PubMed  Google Scholar 

  33. Salles J, Eddiry S, Lacassagne E, Laurier V, Molinas C, Bieth É, et al. Patients with PWS and related syndromes display differentially methylated regions involved in neurodevelopmental and nutritional trajectory. Clin Epigenetics. 2021;13:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leuner B, Caponiti JM, Gould E. Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus. 2012;22:861–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lestanova Z, Bacova Z, Kiss A, Havranek T, Strbak V, Bakos J. Oxytocin increases neurite length and expression of cytoskeletal proteins associated with neuronal growth. J Mol Neurosci. 2016;59:184–92.

    Article  CAS  PubMed  Google Scholar 

  36. Waldhorn I, Turetsky T, Steiner D, Gil Y, Benyamini H, Gropp M, et al. Modeling sex differences in humans using isogenic induced pluripotent stem cells. Stem Cell Rep. 2022;17:2732–44.

    Article  CAS  Google Scholar 

  37. Burnett LC, LeDuc CA, Sulsona CR, Paull D, Eddiry S, Levy B, et al. Induced pluripotent stem cells (iPSC) created from skin fibroblasts of patients with Prader-Willi syndrome (PWS) retain the molecular signature of PWS. Stem Cell Res. 2016;17:526–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reyes S, Fu Y, Double K, Thompson L, Kirik D, Paxinos G, et al. GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. J Comp Neurol. 2012;520:2591–607.

    Article  CAS  PubMed  Google Scholar 

  40. Grow DA, Simmons DV, Gomez JA, Wanat MJ, McCarrey JR, Paladini CA, et al. Differentiation and characterization of dopaminergic neurons from baboon induced pluripotent stem cells. Stem Cells Transl Med. 2016;5:1133–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hartfield EM, Yamasaki-Mann M, Fernandes HJR, Vowles J, James WS, Cowley SA, et al. Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS ONE. 2014;9:e87388.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011;17:10–2.

    Article  Google Scholar 

  43. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinforma Oxf Engl. 2011;27:1571–2.

    Article  CAS  Google Scholar 

  44. Park Y, Figueroa ME, Rozek LS, Sartor MA. MethylSig: a whole genome DNA methylation analysis pipeline. Bioinforma Oxf Engl. 2014;30:2414–22.

    Article  CAS  Google Scholar 

  45. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47:D590–5.

    Article  CAS  PubMed  Google Scholar 

  46. DAVID Functional annotation bioinformatics microarray analysis [Internet]. 2023. Available from: https://david.ncifcrf.gov/

  47. Correa-da-Silva F, Fliers E, Swaab DF, Yi CX. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J Neuroendocrinol. 2021;33:e12994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Muench C, Wiers CE, Cortes CR, Momenan R, Lohoff FW. Dopamine transporter gene methylation is associated with nucleus accumbens activation during reward processing in healthy but not alcohol-dependent individuals. Alcohol Clin Exp Res. 2018;42:21–31.

    Article  CAS  PubMed  Google Scholar 

  49. Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum Genet. 2009;126:51–90.

    Article  CAS  PubMed  Google Scholar 

  50. Kuc K, Bielecki M, Racicka-Pawlukiewicz E, Czerwinski MB, Cybulska-Klosowicz A. The SLC6A3 gene polymorphism is related to the development of attentional functions but not to ADHD. Sci Rep. 2020;10:6176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmitt KC, Rothman RB, Reith MEA. Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates. J Pharm Exp Ther. 2013;346:2–10.

    Article  CAS  Google Scholar 

  52. German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharm Rev. 2015;67:1005–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frieling H, Römer KD, Scholz S, Mittelbach F, Wilhelm J, De Zwaan M, et al. Epigenetic dysregulation of dopaminergic genes in eating disorders. Int J Eat Disord. 2010;43:577–83.

    Article  PubMed  Google Scholar 

  54. Shumay E, Fowler JS, Volkow ND. Genomic features of the human dopamine transporter gene and its potential epigenetic states: implications for phenotypic diversity. PLoS ONE. 2010;5:e11067.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Reith MEA, Kortagere S, Wiers CE, Sun H, Kurian MA, Galli A, et al. The dopamine transporter gene SLC6A3: multidisease risks. Mol Psychiatry. 2022;27:1031–46.

    Article  CAS  PubMed  Google Scholar 

  56. Blum K, Kazmi S, Modestino EJ, Downs BW, Bagchi D, Baron D, et al. A novel precision approach to overcome the ‘addiction pandemic’ by incorporating Genetic Addiction Risk Severity (GARS) and dopamine homeostasis restoration. J Pers Med. 2021;11:212.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Heinrich H, Grunitz J, Stonawski V, Frey S, Wahl S, Albrecht B, et al. Attention, cognitive control and motivation in ADHD: linking event-related brain potentials and DNA methylation patterns in boys at early school age. Sci Rep. 2017;7:3823.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fageera W, Chaumette B, Fortier MÈ, Grizenko N, Labbe A, Sengupta SM, et al. Association between COMT methylation and response to treatment in children with ADHD. J Psychiatr Res. 2021;135:86–93.

    Article  PubMed  Google Scholar 

  59. Dammann G, Teschler S, Haag T, Altmüller F, Tuczek F, Dammann RH. Increased DNA methylation of neuropsychiatric genes occurs in borderline personality disorder. Epigenetics. 2011;6:1454–62.

    Article  CAS  PubMed  Google Scholar 

  60. Thomas M, Banet N, Wallisch A, Glowacz K, Becker-Sadzio J, Gundel F, et al. Differential COMT DNA methylation in patients with borderline personality disorder: genotype matters. Eur Neuropsychopharmacol. 2019;29:1295–300.

    Article  CAS  PubMed  Google Scholar 

  61. Wilens TE, Martelon M, Joshi G, Bateman C, Fried R, Petty C, et al. Does ADHD predict substance use disorders? A 10-year follow-up study of young adults with ADHD. J Am Acad Child Adolesc Psychiatry. 2011;50:543–53.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kienast T, Stoffers J, Bermpohl F, Lieb K. Borderline personality disorder and comorbid addiction. Epidemiol Treat Dtsch Arzteblatt Int 2014;111:280–6.

    Google Scholar 

  63. Hartung JE, Eskew O, Wong T, Tchivileva IE, Oladosu FA, O’Buckley SC, et al. Nuclear factor-kappa B regulates pain and COMT expression in a rodent model of inflammation. Brain Behav Immun. 2015;50:196–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leriche M, Cote-Vélez A, Méndez M. Presence of pro-opiomelanocortin mRNA in the rat medial prefrontal cortex, nucleus accumbens and ventral tegmental area: studies by RT-PCR and in situ hybridization techniques. Neuropeptides. 2007;41:421–31.

    Article  CAS  PubMed  Google Scholar 

  65. Lindblom J, Opmane B, Mutulis F, Mutule I, Petrovska R, Klusa V, et al. The MC4 receptor mediates alpha-MSH induced release of nucleus accumbens dopamine. Neuroreport. 2001;12:2155–8.

    Article  CAS  PubMed  Google Scholar 

  66. Andino LM, Ryder DJ, Shapiro A, Matheny MK, Zhang Y, Judge MK, et al. POMC overexpression in the ventral tegmental area ameliorates dietary obesity. J Endocrinol. 2011;210:199–207.

    Article  CAS  PubMed  Google Scholar 

  67. Efrat S. Epigenetic memory: lessons from IPS cells derived from human β cells. Front Endocrinol. 2021;11:1063.

    Article  Google Scholar 

  68. Burrows CK, Banovich NE, Pavlovic BJ, Patterson K, Gallego Romero I, Pritchard JK, et al. Genetic variation, not cell type of origin, underlies the majority of identifiable regulatory differences in iPSCs. PLoS Genet. 2016;12:e1005793.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Eddiry S, Diene G, Molinas C, Salles J, Auriol FC, Gennero I, et al. SNORD116 and growth hormone therapy impact IGFBP7 in Prader–Willi syndrome. Genet Med. 2021;23:1664–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goetjen A, Watson M, Lieberman R, Clinton K, Kranzler HR, Covault J. Induced pluripotent stem cell reprogramming-associated methylation at the GABRA2 promoter and chr4p12 GABAA subunit gene expression in the context of alcohol use disorder. Am J Med Genet Part B Neuropsychiatr Genet. 2020;183:464–74.

    Article  CAS  Google Scholar 

  71. Marakulina D, Vorontsov IE, Kulakovskiy IV, Lennartsson A, Drabløs F, Medvedeva YA. EpiFactors 2022: expansion and enhancement of a curated database of human epigenetic factors and complexes. Nucleic Acids Res. 2023;51:D564–70.

    Article  CAS  PubMed  Google Scholar 

  72. Dreher JC, Kohn P, Kolachana B, Weinberger DR, Berman KF. Variation in dopamine genes influences responsivity of the human reward system. Proc Natl Acad Sci USA. 2009;106:617–22.

    Article  CAS  PubMed  Google Scholar 

  73. Congdon E, Constable RT, Lesch KP, Canli T. Influence of SLC6A3 and COMT variation on neural activation during response inhibition. Biol Psychol. 2009;81:144–52.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hersrud SL, Stoltenberg SF. Epistatic interaction between COMT and DAT1 genes on eating behavior: a pilot study. Eat Behav. 2009;10:131–3.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lin R, Kos A, Lopez JP, Dine J, Fiori LM, Yang J, et al. SNORD90 induces glutamatergic signaling following treatment with monoaminergic antidepressants. eLife. 2023;12:e85316.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the French Association for Prader-Willi Syndrome (grant R15062BB). MGX acknowledges financial support from the France Génomique National infrastructure, funded as part of “Investissement d’Avenir” program managed by the Agence Nationale pour la Recherche (contract ANR-10-INBS-09).

Author information

Authors and Affiliations

Authors

Contributions

JS, MT, and JPS developed the initial study design. NF, IG, and FJ provided feedback to improve the design. JS, SA, EL, MG and SE performed the cell culture and RT-qPCR. XA and GS performed DNA methylation and related bioinformatics analysis. EL performed RNA sequencing and related bioinformatic analysis. JS and MT performed the combined statistical analysis. JS, MT, JPS and SE wrote the initial manuscript. All authors contributed to improving the manuscript and responding to the reviewers.

Corresponding author

Correspondence to Juliette Salles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salles, J., Eddiry, S., Amri, S. et al. Differential DNA methylation in iPSC-derived dopaminergic neurons: a step forward on the role of SNORD116 microdeletion in the pathophysiology of addictive behavior in Prader-Willi syndrome. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02542-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02542-4

Search

Quick links