Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic overlap between Alzheimer’s disease and immune-mediated diseases: an atlas of shared genetic determinants and biological convergence

Abstract

The occurrence of immune disease comorbidities in Alzheimer’s disease (AD) has been observed in both epidemiological and molecular studies, suggesting a neuroinflammatory basis in AD. However, their shared genetic components have not been systematically studied. Here, we composed an atlas of the shared genetic associations between 11 immune-mediated diseases and AD by analyzing genome-wide association studies (GWAS) summary statistics. Our results unveiled a significant genetic overlap between AD and 11 individual immune-mediated diseases despite negligible genetic correlations, suggesting a complex shared genetic architecture distributed across the genome. The shared loci between AD and immune-mediated diseases implicated several genes, including GRAMD1B, FUT2, ADAMTS4, HBEGF, WNT3, TSPAN14, DHODH, ABCB9, and TNIP1, all of which are protein-coding genes and thus potential drug targets. Top biological pathways enriched with these identified shared genes were related to the immune system and cell adhesion. In addition, in silico single-cell analyses showed enrichment of immune and brain cells, including neurons and microglia. In summary, our results suggest a genetic relationship between AD and the 11 immune-mediated diseases, pinpointing the existence of a shared however non-causal genetic basis. These identified protein-coding genes have the potential to serve as a novel path to therapeutic interventions for both AD and immune-mediated diseases and their comorbidities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Genetic overlap between AD and 11 immune-mediated diseases using MiXeR software.
Fig. 3: Conditional quantile-quantile plots of nominal vs. empirical -log10 p-values in AD below the standard genome-wide association study threshold of p < 5 × 10−8 as a function of significance of association with immune-mediated diseases at the level of -log10 p-values of 1, 2, or 3, corresponding to p = 0.1, p = 0.01, and p = 0.001, respectively.
Fig. 4: A circular dendrogram showing the shared genes between AD (center circle) and each of eleven specific immune-mediated diseases (first circle), resulting in eleven pairs.

Similar content being viewed by others

Data availability

All the GWAS summary statistics data used in this study are publicly available to download from https://www.ebi.ac.uk/gwas/home and https://atlas.ctglab.nl/.

References

  1. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement. 2021;17:327–406.

  2. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63:168–74.

    Article  PubMed  Google Scholar 

  3. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jorfi M, Maaser-Hecker A, Tanzi RE. The neuroimmune axis of Alzheimer’s disease. Genome Med. 2023;15:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Podlesny-Drabiniok A, Marcora E, Goate AM. Microglial phagocytosis: a disease-associated process emerging from Alzheimer’s disease genetics. Trends Neurosci. 2020;43:965–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Olah M, Menon V, Habib N, Taga MF, Ma Y, Yung CJ, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun. 2020;11:6129.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bettcher BM, Tansey MG, Dorothee G, Heneka MT. Peripheral and central immune system crosstalk in Alzheimer disease - a research prospectus. Nat Rev Neurol. 2021;17:689–701.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology. 2018;154:204–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang J, Su B, Karhunen V, Gill D, Zuber V, Ahola-Olli A, et al. Inflammatory diseases, inflammatory biomarkers, and Alzheimer disease: an observational analysis and Mendelian randomization. Neurology. 2023;100:e568–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu L, Chen ST, Li HJ, Qiang Y, Sun XY, Zhou YQ, et al. Association between Psoriasis and Dementia: current evidence. Front Aging Neurosci. 2020;12:570992.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang B, Wang HE, Bai YM, Tsai SJ, Su TP, Chen TJ, et al. Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study. Gut. 2021;70:85–91.

    Article  PubMed  Google Scholar 

  12. Yokoyama JS, Wang Y, Schork AJ, Thompson WK, Karch CM, Cruchaga C, et al. Association between genetic traits for immune-mediated diseases and Alzheimer disease. JAMA Neurol. 2016;73:691–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53:1276–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watanabe K, Stringer S, Frei O, Umicevic Mirkov M, de Leeuw C, Polderman TJC, et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet. 2019;51:1339–48.

    Article  CAS  PubMed  Google Scholar 

  15. Paternoster L, Standl M, Waage J, Baurecht H, Hotze M, Strachan DP, et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet. 2015;47:1449–56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010;42:295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49:256–61.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ji SG, Juran BD, Mucha S, Folseraas T, Jostins L, Melum E, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat Genet. 2017;49:269–73.

    Article  CAS  PubMed  Google Scholar 

  19. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81.

    Article  CAS  PubMed  Google Scholar 

  20. Bentham J, Morris DL, Graham DSC, Pinder CL, Tombleson P, Behrens TW, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet. 2015;47:1457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet. 2016;48:1418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner K, et al. FinnGen: unique genetic insights from combining isolated population and national health register data. MedRxiv 2022:2022.2003. 2003.22271360.

  23. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics C, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frei O, Holland D, Smeland OB, Shadrin AA, Fan CC, Maeland S, et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat Commun. 2019;10:2417.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Andreassen OA, Desikan RS, Wang Y, Thompson WK, Schork AJ, Zuber V, et al. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms. PLoS One. 2015;10:e0123057.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Andreassen OA, Djurovic S, Thompson WK, Schork AJ, Kendler KS, O’Donovan MC, et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am J Hum Genet. 2013;92:197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bedre R. reneshbedre/bioinfokit: Bioinformatics data analysis and visualization toolkit. Zenodo March 2020;5 (10.5281).

  28. Smeland OB, Frei O, Shadrin A, O’Connell K, Fan CC, Bahrami S, et al. Discovery of shared genomic loci using the conditional false discovery rate approach. Hum Genet. 2020;139:85–94.

    Article  CAS  PubMed  Google Scholar 

  29. Schwartzman A, Lin X. The effect of correlation in false discovery rate estimation. Biometrika. 2011;98:199–214.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  30. Werme J, van der Sluis S, Posthuma D, de Leeuw CA. An integrated framework for local genetic correlation analysis. Nat Genet. 2022;54:274–82.

    Article  CAS  PubMed  Google Scholar 

  31. Lambert JC, Grenier-Boley B, Chouraki V, Heath S, Zelenika D, Fievet N, et al. Implication of the immune system in Alzheimer’s disease: evidence from genome-wide pathway analysis. J Alzheimers Dis. 2010;20:1107–18.

    Article  CAS  PubMed  Google Scholar 

  32. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, et al. Alzheimer’s disease. Lancet. 2016;388:505–17.

    Article  CAS  PubMed  Google Scholar 

  33. de Bakker PI, Raychaudhuri S. Interrogating the major histocompatibility complex with high-throughput genomics. Hum Mol Genet. 2012;21:R29–36.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jia P, Wang L, Fanous AH, Chen X, Kendler KS, International Schizophrenia C. et al. A bias-reducing pathway enrichment analysis of genome-wide association data confirmed association of the MHC region with schizophrenia. J Med Genet. 2012;49:96–103.

    Article  CAS  PubMed  Google Scholar 

  35. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–12.

    Article  CAS  PubMed  Google Scholar 

  36. Drange OK, Smeland OB, Shadrin AA, Finseth PI, Witoelar A, Frei O, et al. Genetic overlap between Alzheimer’s disease and bipolar disorder implicates the MARK2 and VAC14 genes. Front Neurosci. 2019;13:220.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Monereo-Sanchez J, Schram MT, Frei O, O’Connell K, Shadrin AA, Smeland OB, et al. Genetic overlap between Alzheimer’s disease and depression mapped onto the brain. Front Neurosci. 2021;15:653130.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fominykh V, Shadrin AA, Jaholkowski PP, Bahrami S, Athanasiu L, Wightman DP, et al. Shared genetic loci between Alzheimer’s disease and multiple sclerosis: crossroads between neurodegeneration and immune system. Neurobiol Dis. 2023;183:106174.

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Clarke L, Fairley S, Zheng-Bradley X, Streeter I, Perry E, Lowy E, et al. The International Genome sample resource (IGSR): a worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Res. 2017;45:D854–9.

    Article  CAS  PubMed  Google Scholar 

  41. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94.

    Article  CAS  PubMed  Google Scholar 

  43. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pei G, Hu R, Jia P, Zhao Z. DeepFun: a deep learning sequence-based model to decipher non-coding variant effect in a tissue- and cell type-specific manner. Nucleic Acids Res. 2021;49:W131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dai Y, Hu R, Liu A, Cho KS, Manuel AM, Li X, et al. WebCSEA: web-based cell-type-specific enrichment analysis of genes. Nucleic Acids Res. 2022;50:W782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodol). 2018;57:289–300.

    MathSciNet  Google Scholar 

  47. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7.

  49. Yeung CHC, Au Yeung SL, Schooling CM. Association of autoimmune diseases with Alzheimer’s disease: a Mendelian randomization study. J Psychiatr Res. 2022;155:550–8.

    Article  PubMed  Google Scholar 

  50. Andersen JP, Zhang J, Sun H, Liu X, Liu J, Nie J, et al. Aster-B coordinates with Arf1 to regulate mitochondrial cholesterol transport. Mol Metab. 2020;42:101055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rausch P, Rehman A, Kunzel S, Hasler R, Ott SJ, Schreiber S, et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci USA. 2011;108:19030–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wacklin P, Makivuokko H, Alakulppi N, Nikkila J, Tenkanen H, Rabina J, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One. 2011;6:e20113.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wacklin P, Tuimala J, Nikkila J, Sebastian T, Makivuokko H, Alakulppi N, et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS One. 2014;9:e94863.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  54. Wu S, Liu X, Jiang R, Yan X, Ling Z. Roles and mechanisms of gut microbiota in patients with Alzheimer’s disease. Front Aging Neurosci. 2021;13:650047.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bairamian D, Sha S, Rolhion N, Sokol H, Dorothee G, Lemere CA, et al. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease. Mol Neurodegener. 2022;17:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matsuzaki M, Yokoyama M, Yoshizawa Y, Kaneko N, Naito H, Kobayashi H, et al. ADAMTS4 is involved in the production of the Alzheimer disease amyloid biomarker APP669-711. Mol Psychiatry. 2023;28:1802–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Walter S, Jumpertz T, Huttenrauch M, Ogorek I, Gerber H, Storck SE, et al. The metalloprotease ADAMTS4 generates N-truncated Abeta4-x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer’s disease. Acta Neuropathol. 2019;137:239–57.

    Article  CAS  PubMed  Google Scholar 

  58. Scialo F, Fernandez-Ayala DJ, Sanz A. Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol. 2017;8:428.

    Article  PubMed  PubMed Central  Google Scholar 

  59. da Rocha JF, Bastos L, Domingues SC, Bento AR, Konietzko U, da Cruz ESOAB, et al. APP binds to the EGFR ligands HB-EGF and EGF, acting synergistically with EGF to promote ERK signaling and neuritogenesis. Mol Neurobiol. 2021;58:668–88.

    Article  PubMed  Google Scholar 

  60. Sasaki K, Omotuyi OI, Ueda M, Shinohara K, Ueda H. NMDA receptor agonists reverse impaired psychomotor and cognitive functions associated with hippocampal Hbegf-deficiency in mice. Mol Brain. 2015;8:83.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jin K, Sun Y, Xie L, Batteur S, Mao XO, Smelick C, et al. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell. 2003;2:175–83.

    Article  CAS  PubMed  Google Scholar 

  62. Oyagi A, Hara H. Essential roles of heparin-binding epidermal growth factor-like growth factor in the brain. CNS Neurosci Ther. 2012;18:803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Adelaja A, Hoffmann A. Signaling crosstalk mechanisms that may fine-tune pathogen-responsive NFkappaB. Front Immunol. 2019;10:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jones SV, Kounatidis I. Nuclear factor-Kappa B and Alzheimer disease, unifying genetic and environmental risk factors from cell to humans. Front Immunol. 2017;8:1805.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sun Y, Zhu J, Zhou D, Canchi S, Wu C, Cox NJ, et al. A transcriptome-wide association study of Alzheimer’s disease using prediction models of relevant tissues identifies novel candidate susceptibility genes. Genome Med. 2021;13:141.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang XL, Li L. Cell type-specific potential pathogenic genes and functional pathways in Alzheimer’s Disease. BMC Neurol. 2021;21:381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakajima T, Fujino S, Nakanishi G, Kim YS, Jetten AM. TIP27: a novel repressor of the nuclear orphan receptor TAK1/TR4. Nucleic Acids Res. 2004;32:4194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Driedonks TAP. Nolte-‘t Hoen ENM. Circulating Y-RNAs in extracellular vesicles and ribonucleoprotein complexes; implications for the immune system. Front Immunol. 2018;9:3164.

    Article  CAS  PubMed  Google Scholar 

  69. Scheckel C, Drapeau E, Frias MA, Park CY, Fak J, Zucker-Scharff I et al. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. Elife. 2016;5.

  70. Malik U, Javed A, Ali A, Asghar K. Structural and functional annotation of human FAM26F: a multifaceted protein having a critical role in the immune system. Gene. 2017;597:66–75.

    Article  CAS  PubMed  Google Scholar 

  71. Owen KA, Grammer AC, Lipsky PE. Deconvoluting the heterogeneity of SLE: The contribution of ancestry. J Allergy Clin Immunol. 2022;149:12–23.

    Article  PubMed  Google Scholar 

  72. Yin X, Kim K, Suetsugu H, Bang SY, Wen L, Koido M, et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann Rheum Dis. 2021;80:632–40.

    Article  CAS  PubMed  Google Scholar 

  73. Hitomi Y, Nakamura M. The genetics of primary biliary cholangitis: a GWAS and Post-GWAS update. Genes (Basel). 2023;14.

Download references

Acknowledgements

We thank those investigators who generated and shared the genetic datasets used in the present study.

Funding

This research was partially supported by National Institutes of Health grants awarded to ZZ (R01LM012806, R01LM012806-07S1, R03AG077191, and U01AG079847). We thanked the resource support from Cancer Prevention and Research Institute of Texas (CPRIT RP180734). OAA is supported by the Research Council of Norway (#324499, #324252, #223273), South-East Norway Health Authority (2022-073), KG Jebsen Stiftelsen, Norwegian Health Association (#22731), and EU Horizon 2020 (# 847776). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NE, BSF, YD, and ZZ designed the study and collected the data. NE, SB, and YD performed the analyses. NE, BSF, OAA, and SB contributed to the literature search. NE, BSF, YD, and ZZ drafted the initial manuscript and all the authors contributed to data interpretation and manuscript writing.

Corresponding author

Correspondence to Zhongming Zhao.

Ethics declarations

Competing interests

OAA is a consultant to Cortechs.ai, and has received speaker’s honoraria from Lundbeck, Janssen and Sunovion. NE, BSF, SB, YD, and ZZ have nothing to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enduru, N., Fernandes, B.S., Bahrami, S. et al. Genetic overlap between Alzheimer’s disease and immune-mediated diseases: an atlas of shared genetic determinants and biological convergence. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02510-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02510-y

Search

Quick links