Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The lncRNA Snhg11, a new candidate contributing to neurogenesis, plasticity, and memory deficits in Down syndrome

Abstract

Down syndrome (DS) stands as the prevalent genetic cause of intellectual disability, yet comprehensive understanding of its cellular and molecular underpinnings remains limited. In this study, we explore the cellular landscape of the hippocampus in a DS mouse model, the Ts65Dn, through single-nuclei transcriptional profiling. Our findings demonstrate that trisomy manifests as a highly specific modification of the transcriptome within distinct cell types. Remarkably, we observed a significant shift in the transcriptomic profile of granule cells in the dentate gyrus (DG) associated with trisomy. We identified the downregulation of a specific small nucleolar RNA host gene, Snhg11, as the primary driver behind this observed shift in the trisomic DG. Notably, reduced levels of Snhg11 in this region were also observed in a distinct DS mouse model, the Dp(16)1Yey, as well as in human postmortem brain tissue, indicating its relevance in Down syndrome. To elucidate the function of this long non-coding RNA (lncRNA), we knocked down Snhg11 in the DG of wild-type mice. Intriguingly, this intervention alone was sufficient to impair synaptic plasticity and adult neurogenesis, resembling the cognitive phenotypes associated with trisomy in the hippocampus. Our study uncovers the functional role of Snhg11 in the DG and underscores the significance of this lncRNA in intellectual disability. Furthermore, our findings highlight the importance of DG in the memory deficits observed in Down syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Unbiased identification of neuronal subtypes in hippocampus.
Fig. 2: Differentially expressed genes (DEGs) in the trisomic hippocampal cell types.
Fig. 3: Transcriptomic shift specific to the dentate gyrus.
Fig. 4: Snhg11 knockdown in the WT Dentate gyrus leads to transcriptomic alterations similar to those of TS mice.
Fig. 5: Snhg11 knockdown in the WT dentate gyrus leads to deficits in neurogenesis and long-term potentiation.
Fig. 6: Snhg11 knockdown effects on hippocampal-dependent memory in WT, WT injected either with control-ASO or Snhg11-ASO and TS mice.

Similar content being viewed by others

Data availability

The snRNA-seq and bulk RNA-seq data that support the findings of this study have been deposited in the Gene Expression Omnibus repository, with the series records GSE212351 and GSE212258. Basecalled FAST5 of nanopore direct RNA sequencing runs have been deposited to ENA, under accession code PRJEB58921. All the processed data and supplementary materials are available upon request.

Code availability

The software used in this study is available at the following online repositories. R package Seurat version 2.3.4: https://github.com/satijalab/seurat; R package Destiny version 1.1.0: https://github.com/theislab/destiny; R package DESeq2 version 1.34.0: https://bioconductor.org/packages/release/bioc/html/DESeq2.html; R package Rsubread version 2.12.3: https://bioconductor.org/packages/release/bioc/html/Rsubread.html; R package BioMart version 2.54.1: https://bioconductor.org/packages/release/bioc/html/biomaRt.html; plots were made with ggplot2: https://cloud.r-project.org/web/packages/ggplot2/index.html. R version 4.2.1. Custom codes used in this study are available upon request.

References

  1. Pennington BF, Moon J, Edgin J, Stedron J, Nadel L. The neuropsychology of Down syndrome: evidence for hippocampal dysfunction. Child Dev. 2003;74:75–93.

    PubMed  Google Scholar 

  2. Nadel L. Down’s syndrome: a genetic disorder in biobehavioral perspective. Genes Brain Behav. 2003;2:156–66.

    CAS  PubMed  Google Scholar 

  3. Contestabile A, Fila T, Ceccarelli C, Bonasoni P, Bonapace L, Santini D, et al. Cell cycle alteration and decreased cell proliferation in the hippocampal dentate gyrus and in the neocortical germinal matrix of fetuses with Down syndrome and in Ts65Dn mice. Hippocampus. 2007;17:665–78.

    PubMed  Google Scholar 

  4. Dierssen M. Down syndrome: the brain in trisomic mode. Nat Rev Neurosci. 2012;13:844–58.

    CAS  PubMed  Google Scholar 

  5. De Toma I, Sierra C, Dierssen M. Meta-analysis of transcriptomic data reveals clusters of consistently deregulated gene and disease ontologies in Down syndrome. PLoS Comput Biol. 2021;17:e1009317.

    PubMed  PubMed Central  Google Scholar 

  6. Mendioroz M, Do C, Jiang X, Liu C, Darbary HK, Lang CF, et al. Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models. Genome Biol. 2015;16:263.

    PubMed  PubMed Central  Google Scholar 

  7. El Hajj N, Dittrich M, Bock J, Kraus TF, Nanda I, Muller T, et al. Epigenetic dysregulation in the developing Down syndrome cortex. Epigenetics. 2016;11:563–78.

    PubMed  PubMed Central  Google Scholar 

  8. Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, et al. Accelerated epigenetic aging in Down syndrome. Aging Cell. 2015;14:491–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Puente-Bedia A, Berciano MT, Tapia O, Martinez-Cue C, Lafarga M, Rueda N. Nuclear reorganization in hippocampal granule cell neurons from a mouse model of down syndrome: changes in chromatin configuration, nucleoli and cajal bodies. Int J Mol Sci. 2021;22:1259.

  10. De Toma I, Ortega M, Catuara-Solarz S, Sierra C, Sabido E, Dierssen M. Re-establishment of the epigenetic state and rescue of kinome deregulation in Ts65Dn mice upon treatment with green tea extract and environmental enrichment. Sci Rep. 2020;10:16023.

    PubMed  PubMed Central  ADS  Google Scholar 

  11. Muskens IS, Li S, Jackson T, Elliot N, Hansen HM, Myint SS, et al. The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis. Nat Commun. 2021;12:821.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Antonarakis SE. Down syndrome and the complexity of genome dosage imbalance. Nat Rev Genet. 2017;18:147–63.

    CAS  PubMed  Google Scholar 

  13. Qiu JJ, Liu YN, Ren ZR, Yan JB. Dysfunctions of mitochondria in close association with strong perturbation of long noncoding RNAs expression in down syndrome. Int J Biochem Cell Biol. 2017;92:115–20.

    CAS  PubMed  Google Scholar 

  14. Ma W, Liu Y, Ma H, Ren Z, Yan J. Cis-acting: A pattern of lncRNAs for gene regulation in induced pluripotent stem cells from patients with Down syndrome determined by integrative analysis of lncRNA and mRNA profiling data. Exp Ther Med. 2021;22:701.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Salemi M, Cannarella R, Marchese G, Salluzzo MG, Ravo M, Barone C, et al. Role of long non-coding RNAs in Down syndrome patients: a transcriptome analysis study. Hum Cell. 2021;34:1662–70.

    CAS  PubMed  Google Scholar 

  16. Spadaro PA, Flavell CR, Widagdo J, Ratnu VS, Troup M, Ragan C, et al. Long noncoding RNA-directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice. Biol Psychiatry. 2015;78:848–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Grinman E, Espadas I, Puthanveettil SV. Emerging roles for long noncoding RNAs in learning, memory and associated disorders. Neurobiol Learn Mem. 2019;163:107034.

    CAS  PubMed  Google Scholar 

  18. Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29:3082–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramos AD, Diaz A, Nellore A, Delgado RN, Park KY, Gonzales-Roybal G, et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell. 2013;12:616–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Peschansky VJ, Pastori C, Zeier Z, Wentzel K, Velmeshev D, Magistri M, et al. The long non-coding RNA FMR4 promotes proliferation of human neural precursor cells and epigenetic regulation of gene expression in trans. Mol Cell Neurosci. 2016;74:49–57.

    CAS  PubMed  Google Scholar 

  21. Letourneau A, Santoni FA, Bonilla X, Sailani MR, Gonzalez D, Kind J, et al. Domains of genome-wide gene expression dysregulation in Down’s syndrome. Nature. 2014;508:345–50.

    CAS  PubMed  ADS  Google Scholar 

  22. Li Z, Yu T, Morishima M, Pao A, LaDuca J, Conroy J, et al. Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum Mol Genet. 2007;16:1359–66.

    CAS  PubMed  Google Scholar 

  23. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76.

    CAS  PubMed  ADS  Google Scholar 

  24. Liu R, Lei JX, Luo C, Lan X, Chi L, Deng P, et al. Increased EID1 nuclear translocation impairs synaptic plasticity and memory function associated with pathogenesis of Alzheimer’s disease. Neurobiol Dis. 2012;45:902–12.

    CAS  PubMed  Google Scholar 

  25. Rueda N, Mostany R, Pazos A, Florez J, Martinez-Cue C. Cell proliferation is reduced in the dentate gyrus of aged but not young Ts65Dn mice, a model of Down syndrome. Neurosci Lett. 2005;380:197–201.

    CAS  PubMed  Google Scholar 

  26. Trazzi S, Mitrugno VM, Valli E, Fuchs C, Rizzi S, Guidi S, et al. APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome. Hum Mol Genet. 2011;20:1560–73.

    CAS  PubMed  Google Scholar 

  27. Bianchi P, Ciani E, Contestabile A, Guidi S, Bartesaghi R. Lithium restores neurogenesis in the subventricular zone of the Ts65Dn mouse, a model for Down syndrome. Brain Pathol. 2010;20:106–18.

    CAS  PubMed  Google Scholar 

  28. Tang XY, Xu L, Wang J, Hong Y, Wang Y, Zhu Q, et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. J Clin Investig. 2021;131:e135763.

  29. Noh K, Lee H, Choi TY, Joo Y, Kim SJ, Kim H, et al. Negr1 controls adult hippocampal neurogenesis and affective behaviors. Mol Psychiatry. 2019;24:1189–205.

    CAS  PubMed  Google Scholar 

  30. Del Toro D, Ruff T, Cederfjall E, Villalba A, Seyit-Bremer G, Borrell V, et al. Regulation of cerebral cortex folding by controlling neuronal migration via FLRT adhesion molecules. Cell. 2017;169:621–35.e616.

    PubMed  Google Scholar 

  31. Chakrabarti L, Best TK, Cramer NP, Carney RS, Isaac JT, Galdzicki Z, et al. Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nat Neurosci. 2010;13:927–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hernandez S, Gilabert-Juan J, Blasco-Ibanez JM, Crespo C, Nacher J, Varea E. Altered expression of neuropeptides in the primary somatosensory cortex of the Down syndrome model Ts65Dn. Neuropeptides. 2012;46:29–37.

    CAS  PubMed  Google Scholar 

  33. Hernandez-Gonzalez S, Ballestin R, Lopez-Hidalgo R, Gilabert-Juan J, Blasco-Ibanez JM, Crespo C, et al. Altered distribution of hippocampal interneurons in the murine Down Syndrome model Ts65Dn. Neurochem Res. 2015;40:151–64.

    CAS  PubMed  Google Scholar 

  34. Contestabile A, Magara S, Cancedda L. The GABAergic hypothesis for cognitive disabilities in Down syndrome. Front Cell Neurosci. 2017;11:54.

    PubMed  PubMed Central  Google Scholar 

  35. Vilardell M, Rasche A, Thormann A, Maschke-Dutz E, Perez-Jurado LA, Lehrach H, et al. Meta-analysis of heterogeneous Down syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genom. 2011;12:229.

    Google Scholar 

  36. Beacher F, Simmons A, Daly E, Prasher V, Adams C, Margallo-Lana ML, et al. Hippocampal myo-inositol and cognitive ability in adults with Down syndrome: an in vivo proton magnetic resonance spectroscopy study. Arch Gen Psychiatry. 2005;62:1360–5.

    PubMed  Google Scholar 

  37. Ahn EY, DeKelver RC, Lo MC, Nguyen TA, Matsuura S, Boyapati A, et al. SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol Cell. 2011;42:185–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Berto GE, Iobbi C, Camera P, Scarpa E, Iampietro C, Bianchi F, et al. The DCR protein TTC3 affects differentiation and Golgi compactness in neurons through specific actin-regulating pathways. PLoS One. 2014;9:e93721.

    PubMed  PubMed Central  ADS  Google Scholar 

  39. Angerer P, Fischer DS, Theis FJ, Scialdone A, Marr C. Automatic identification of relevant genes from low-dimensional embeddings of single-cell RNA-seq data. Bioinformatics. 2020;36:4291–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Angerer P, Haghverdi L, Buttner M, Theis FJ, Marr C, Buettner F. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics. 2016;32:1241–3.

    CAS  PubMed  Google Scholar 

  41. Hochgerner H, Zeisel A, Lonnerberg P, Linnarsson S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat Neurosci. 2018;21:290–9.

    CAS  PubMed  Google Scholar 

  42. Deng W, Saxe MD, Gallina IS, Gage FH. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci. 2009;29:13532–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. A role for adult neurogenesis in spatial long-term memory. Neuroscience. 2005;130:843–52.

    CAS  PubMed  Google Scholar 

  44. Tronel S, Charrier V, Sage C, Maitre M, Leste-Lasserre T, Abrous DN. Adult-born dentate neurons are recruited in both spatial memory encoding and retrieval. Hippocampus. 2015;25:1472–9.

    CAS  PubMed  Google Scholar 

  45. Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front Oncol. 2020;10:389.

    PubMed  PubMed Central  Google Scholar 

  46. Wu Q, Ma J, Wei J, Meng W, Wang Y, Shi M. lncRNA SNHG11 promotes gastric cancer progression by activating the wnt/beta-catenin pathway and oncogenic autophagy. Mol Ther. 2021;29:1258–78.

    CAS  PubMed  Google Scholar 

  47. Huang W, Dong S, Cha Y, Yuan X. SNHG11 promotes cell proliferation in colorectal cancer by forming a positive regulatory loop with c-Myc. Biochem Biophys Res Commun. 2020;527:985–92.

    CAS  PubMed  Google Scholar 

  48. Liu S, Yang N, Wang L, Wei B, Chen J, Gao Y. lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/beta-catenin signaling pathway. J Cell Physiol. 2020;235:7541–53.

    CAS  PubMed  Google Scholar 

  49. Geng YB, Xu C, Wang Y, Zhang LW. Long non-coding RNA SNHG11 promotes cell proliferation, invasion and migration in glioma by targeting miR-154-5p. Eur Rev Med Pharm Sci. 2020;24:4901–8.

    Google Scholar 

  50. Yu L, Zhang W, Wang P, Zhang Q, Cong A, Yang X, et al. LncRNA SNHG11 aggravates cell proliferation and migration in triple-negative breast cancer via sponging miR-2355-5p and targeting CBX5. Exp Ther Med. 2021;22:892.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Begik O, Lucas MC, Pryszcz LP, Ramirez JM, Medina R, Milenkovic I, et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat Biotechnol. 2021;39:1278–91.

    CAS  PubMed  Google Scholar 

  52. Tomita H, Cornejo F, Aranda-Pino B, Woodard CL, Rioseco CC, Neel BG, et al. The protein tyrosine phosphatase receptor delta regulates developmental neurogenesis. Cell Rep. 2020;30:215–28.e215.

    CAS  PubMed  Google Scholar 

  53. Lin L, Murphy JG, Karlsson RM, Petralia RS, Gutzmann JJ, Abebe D, et al. DPP6 loss impacts hippocampal synaptic development and induces behavioral impairments in recognition, learning and memory. Front Cell Neurosci. 2018;12:84.

    PubMed  PubMed Central  Google Scholar 

  54. Rolls ET. A computational theory of episodic memory formation in the hippocampus. Behav Brain Res. 2010;215:180–96.

    PubMed  Google Scholar 

  55. Rolls ET, Kesner RP. A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol. 2006;79:1–48.

    CAS  PubMed  Google Scholar 

  56. van Hagen BT, van Goethem NP, Lagatta DC, Prickaerts J. The object pattern separation (OPS) task: a behavioral paradigm derived from the object recognition task. Behav Brain Res. 2015;285:44–52.

    PubMed  Google Scholar 

  57. Kazuki Y, Gao FJ, Li Y, Moyer AJ, Devenney B, Hiramatsu K, et al. A non-mosaic transchromosomic mouse model of down syndrome carrying the long arm of human chromosome 21. Elife. 2020;9:e56223.

  58. O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science. 2005;309:2033–7.

    PubMed  PubMed Central  ADS  Google Scholar 

  59. Sheltzer JM, Torres EM, Dunham MJ, Amon A. Transcriptional consequences of aneuploidy. Proc Natl Acad Sci USA. 2012;109:12644–9.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Durrbaum M, Kuznetsova AY, Passerini V, Stingele S, Stoehr G, Storchova Z. Unique features of the transcriptional response to model aneuploidy in human cells. BMC Genom. 2014;15:139.

    Google Scholar 

  61. Nizetic D, Chen CL, Hong W, Koo EH. Inter-dependent mechanisms behind cognitive dysfunction, vascular biology and Alzheimer’s dementia in down syndrome: multi-faceted roles of APP. Front Behav Neurosci. 2015;9:299.

    PubMed  PubMed Central  Google Scholar 

  62. Miranda AM, Herman M, Cheng R, Nahmani E, Barrett G, Micevska E, et al. Excess synaptojanin 1 contributes to place cell dysfunction and memory deficits in the aging hippocampus in three types of Alzheimer’s disease. Cell Rep. 2018;23:2967–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang W, Bouhours M, Gracheva EO, Liao EH, Xu K, Sengar AS, et al. ITSN-1 controls vesicle recycling at the neuromuscular junction and functions in parallel with DAB-1. Traffic. 2008;9:742–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Verstreken P, Koh TW, Schulze KL, Zhai RG, Hiesinger PR, Zhou Y, et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron. 2003;40:733–48.

    CAS  PubMed  Google Scholar 

  65. Kohli MA, Cukier HN, Hamilton-Nelson KL, Rolati S, Kunkle BW, Whitehead PL, et al. Segregation of a rare TTC3 variant in an extended family with late-onset Alzheimer disease. Neurol Genet. 2016;2:e41.

    PubMed  PubMed Central  Google Scholar 

  66. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269:973–7.

    CAS  PubMed  ADS  Google Scholar 

  67. Stagni F, Bartesaghi R. The challenging pathway of treatment for neurogenesis impairment in down syndrome: achievements and perspectives. Front Cell Neurosci. 2022;16:903729.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lorenzi HA, Reeves RH. Hippocampal hypocellularity in the Ts65Dn mouse originates early in development. Brain Res. 2006;1104:153–9.

    CAS  PubMed  Google Scholar 

  69. Karlsen AS, Pakkenberg B. Total numbers of neurons and glial cells in cortex and basal ganglia of aged brains with Down syndrome-a stereological study. Cereb Cortex. 2011;21:2519–24.

    PubMed  Google Scholar 

  70. Clark S, Schwalbe J, Stasko MR, Yarowsky PJ, Costa AC. Fluoxetine rescues deficient neurogenesis in hippocampus of the Ts65Dn mouse model for Down syndrome. Exp Neurol. 2006;200:256–61.

    CAS  PubMed  Google Scholar 

  71. Mittwoch U. Mongolism and sex: a common problem of cell proliferation? J Med Genet. 1972;9:92–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hagihara H, Takao K, Walton NM, Matsumoto M, Miyakawa T. Immature dentate gyrus: an endophenotype of neuropsychiatric disorders. Neural Plast. 2013;2013:318596.

    PubMed  PubMed Central  Google Scholar 

  73. Yamasaki N, Maekawa M, Kobayashi K, Kajii Y, Maeda J, Soma M, et al. Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain. 2008;1:6.

    PubMed  PubMed Central  Google Scholar 

  74. Ohira K, Kobayashi K, Toyama K, Nakamura HK, Shoji H, Takao K, et al. Synaptosomal-associated protein 25 mutation induces immaturity of the dentate granule cells of adult mice. Mol Brain. 2013;6:12.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen J, Wang Y, Wang C, Hu JF, Li W. LncRNA functions as a new emerging epigenetic factor in determining the fate of stem cells. Front Genet. 2020;11:277.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature. 2016;540:423–7.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Mishra P, Kumar S. Association of lncRNA with regulatory molecular factors in brain and their role in the pathophysiology of schizophrenia. Metab Brain Dis. 2021;36:849–58.

    CAS  PubMed  Google Scholar 

  78. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17:272–83.

    CAS  PubMed  Google Scholar 

  79. Penzo M, Montanaro L. Turning uridines around: role of rRNA pseudouridylation in ribosome biogenesis and ribosomal function. Biomolecules. 2018;8:38.

  80. Bergeron D, Fafard-Couture E, Scott MS. Small nucleolar RNAs: continuing identification of novel members and increasing diversity of their molecular mechanisms of action. Biochem Soc Trans. 2020;48:645–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Falaleeva M, Welden JR, Duncan MJ, Stamm S. C/D-box snoRNAs form methylating and non-methylating ribonucleoprotein complexes: old dogs show new tricks. Bioessays. 2017;39:10.

  82. Bratkovic T, Bozic J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 2020;48:1627–51.

    CAS  PubMed  Google Scholar 

  83. Poplawski SG, Peixoto L, Porcari GS, Wimmer ME, McNally AG, Mizuno K, et al. Contextual fear conditioning induces differential alternative splicing. Neurobiol Learn Mem. 2016;134:221–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Leighton LJ, Ke K, Zajaczkowski EL, Edmunds J, Spitale RC, Bredy TW. Experience-dependent neural plasticity, learning, and memory in the era of epitranscriptomics. Genes Brain Behav. 2018;17:e12426.

    CAS  PubMed  Google Scholar 

  85. Rogelj B, Hartmann CE, Yeo CH, Hunt SP, Giese KP. Contextual fear conditioning regulates the expression of brain-specific small nucleolar RNAs in hippocampus. Eur J Neurosci. 2003;18:3089–96.

    PubMed  Google Scholar 

  86. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437:1370–5.

    CAS  PubMed  ADS  Google Scholar 

  87. Granno S, Nixon-Abell J, Berwick DC, Tosh J, Heaton G, Almudimeegh S, et al. Downregulated Wnt/beta-catenin signalling in the Down syndrome hippocampus. Sci Rep. 2019;9:7322.

    PubMed  PubMed Central  ADS  Google Scholar 

  88. Ito H, Morishita R, Mizuno M, Kawamura N, Tabata H, Nagata KI. Biochemical and morphological characterization of a neurodevelopmental disorder-related mono-ADP-ribosylhydrolase, MACRO domain containing 2. Dev Neurosci. 2018;40:278–87.

    CAS  PubMed  Google Scholar 

  89. Bromer C, Bartol TM, Bowden JB, Hubbard DD, Hanka DC, Gonzalez PV, et al. Long-term potentiation expands information content of hippocampal dentate gyrus synapses. Proc Natl Acad Sci USA. 2018;115:E2410–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kleschevnikov AM, Belichenko PV, Villar AJ, Epstein CJ, Malenka RC, Mobley WC. Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J Neurosci. 2004;24:8153–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472:466–70.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  92. Ishikawa R, Fukushima H, Frankland PW, Kida S. Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval. Elife. 2016;5:e17464.

  93. Yang CH, Di Antonio A, Kirschen GW, Varma P, Hsieh J, Ge S. Circuit integration initiation of new hippocampal neurons in the adult brain. Cell Rep. 2020;30:959–68.e953.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu L, Huan L, Guo T, Wu Y, Liu Y, Wang Q, et al. LncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1alpha. Oncogene. 2020;39:7005–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Roper RJ, Goodlett CR, Martinez de Lagran M, Dierssen M. Behavioral phenotyping for down syndrome in mice. Curr Protoc Mouse Biol. 2020;10:e79.

    PubMed  PubMed Central  Google Scholar 

  96. Martelotto LG. ‘Frankenstein’ protocol for nuclei isolation from fresh and frozen tissue for snRNAseq. 2020.

  97. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  98. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tang M, Kaymaz Y, Logeman BL, Eichhorn S, Liang ZS, Dulac C, et al. Evaluating single-cell cluster stability using the Jaccard similarity index. Bioinformatics. 2021;37:2212–4.

    CAS  PubMed  Google Scholar 

  101. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9.

    CAS  PubMed  Google Scholar 

  102. Cao Y, Lin Y, Ormerod JT, Yang P, Yang JYH, Lo KK. scDC: single cell differential composition analysis. BMC Bioinform. 2019;20:721.

    CAS  Google Scholar 

  103. Arneson D, Zhang G, Ying Z, Zhuang Y, Byun HR, Ahn IS, et al. Single-cell molecular alterations reveal target cells and pathways of concussive brain injury. Nat Commun. 2018;9:3894.

    PubMed  PubMed Central  ADS  Google Scholar 

  104. Jaszczyk A, Stankiewicz AM, Juszczak GR. Dissection of mouse hippocampus with its dorsal, intermediate and ventral subdivisions combined with molecular validation. Brain Sci. 2022;12:799.

  105. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    CAS  PubMed  Google Scholar 

  106. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47:e47.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Google Scholar 

  108. Cozzuto L, Liu H, Pryszcz LP, Pulido TH, Delgado-Tejedor A, Ponomarenko J, et al. MasterOfPores: a workflow for the analysis of Oxford nanopore direct RNA sequencing datasets. Front Genet. 2020;11:211.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Smith MA, Ersavas T, Ferguson JM, Liu H, Lucas MC, Begik O, et al. Molecular barcoding of native RNAs using nanopore sequencing and deep learning. Genome Res. 2020;30:1345–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sovic I, Sikic M, Wilm A, Fenlon SN, Chen S, Nagarajan N. Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat Commun. 2016;7:11307.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. Liu H, Begik O, Lucas MC, Ramirez JM, Mason CE, Wiener D, et al. Accurate detection of m(6)A RNA modifications in native RNA sequences. Nat Commun. 2019;10:4079.

    PubMed  PubMed Central  ADS  Google Scholar 

  112. Sierra C, De Toma I, Cascio LL, Vegas E, Dierssen M. Social factors influence behavior in the novel object recognition task in a mouse model of Down syndrome. Front Behav Neurosci. 2021;15:772734.

    PubMed  PubMed Central  Google Scholar 

  113. Simon P, Dupuis R, Costentin J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res. 1994;61:59–64.

    CAS  PubMed  Google Scholar 

  114. Pons-Espinal M, Martinez de Lagran M, Dierssen M. Environmental enrichment rescues DYRK1A activity and hippocampal adult neurogenesis in TgDyrk1A. Neurobiol Dis. 2013;60:18–31.

    CAS  PubMed  Google Scholar 

  115. Wojtowicz JM, Kee N. BrdU assay for neurogenesis in rodents. Nat Protoc. 2006;1:1399–405.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Single Cell Genomics Team at the National Center for Genomic Analysis (CNAG) led by Holger Heyn for their assistance with experiment planning and sequencing and for the fruitful discussion throughout this project. We are grateful to the CRG Genomics Unit for the support and assistance in this work. We thank Marie-Claude Potier lab for providing and dissecting the Dp16 DG tissues. Human tissue was obtained from the Biobank of the Hospital Clinic of Barcelona. We acknowledge the support of the Spanish Ministry of Science and Innovation through the Centro de Excelencia Severo Ochoa (CEX2020‐001049‐S, MCIN/AEI /10.13039/501100011033), the Generalitat de Catalunya through the CERCA program and to the EMBL partnership. We are grateful to the CRG Core Technologies Program for their support and assistance in this work.

Funding

The lab of MD is recognized by the Secretaria d’Universitats i Recerca del Departament d’Economia I Coneixement de la Generalitat de Catalunya (Grups consolidats 2023). This project has received funding from the Agencia Estatal de Investigación (PID2019-110755RB-I00/AEI/10.13039/501100011033; PID2022-141900OB-I00 INTO-DS), from the European Union’s Horizon 2020 research and innovation program under grant agreement No 848077 and 899986, Jerôme Lejeune Foundation #2002, Fundació La Marató-TV3 (#2016/20-30), Ministerio de Ciencia Innovación y Universidades (RTC2019-007230-1, RTC2019-007329-1; and CPP2022-009659). The CIBER of Rare Diseases is an initiative of the ISCIII. C.S. received the FI grant from Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) de la Generalitat de Catalunya, M.S.N. received an FPU fellowship (FPU19/04789) from Ministerio de Universidades and A.F.B. received an FPI-SO fellowship (PRE2018-084504). S.C. is supported by “la Caixa” InPhINIT Ph.D. fellowship (LCF/BQ/DI19/11730036). The lab of EMN is funded by the Spanish Ministry of Economy, Industry and Competitiveness (PID2021-128193NB-100 to EMN) and the European Research Council (ERC-2021-STG no. 101042103 to EMN).

Author information

Authors and Affiliations

Authors

Contributions

MD and CS conceived, designed and coordinated the study, and wrote the manuscript. CS collected and analyzed sequencing datasets. CS and AFB conducted in vivo animal experiments and CS in vitro experiments. MSN and AZM conducted the electrophysiology experiments. SC performed the Nanopore sequencing experiments and their analyses, under the supervision of EMN. All authors revised and corrected the final version of the manuscript.

Corresponding authors

Correspondence to Cesar Sierra or Mara Dierssen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sierra, C., Sabariego-Navarro, M., Fernández-Blanco, Á. et al. The lncRNA Snhg11, a new candidate contributing to neurogenesis, plasticity, and memory deficits in Down syndrome. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02440-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02440-9

Search

Quick links