Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis

Abstract

The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA→NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food- and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deletion of NAPE-PLD in the nervous system promotes reward seeking behaviors and reduces N-acylethanolamines in the VTA.
Fig. 2: NAPE-PLD knock-down in the VTA promotes reward-seeking behaviors and food preference.
Fig. 3: NAPE-PLD knock-down in the VTA regulates in vivo DA release dynamics.
Fig. 4: VTA NAPE-PLD contributes to the regulation of energy balance and metabolic efficiency.
Fig. 5: VTA NAPE-PLD regulates energy balance independently from exercise.
Fig. 6: VTA NAPE-PLD protects from obesity-associated metabolic features.

Similar content being viewed by others

Data availability

All the data generated have been included in the article. Datasets are available from the corresponding authors upon reasonable request.

References

  1. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443:289–95.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Rossi MA, Stuber GD. Overlapping Brain Circuits for Homeostatic and Hedonic Feeding. Cell Metab. 2018;27:42–56.

    Article  CAS  PubMed  Google Scholar 

  3. de Araujo IE, Schatzker M, Small DM. Rethinking Food Reward. Annu Rev Psychol. 2020;71:139–64.

    Article  PubMed  Google Scholar 

  4. Berland C, Small DM, Luquet S, Gangarossa G. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol Metab. 2021;32:693–705.

    Article  CAS  PubMed  Google Scholar 

  5. Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res. 2023;89:101194.

    Article  CAS  PubMed  Google Scholar 

  6. Hussain Z, Uyama T, Tsuboi K, Ueda N. Mammalian enzymes responsible for the biosynthesis of N -acylethanolamines. Biochim Biophys Acta. 2017;1862:1546–61.

    Article  CAS  Google Scholar 

  7. Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem. 2004;279:5298–305.

    Article  CAS  PubMed  Google Scholar 

  8. Ahern GP. Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem. 2003;278:30429–34.

    Article  CAS  PubMed  Google Scholar 

  9. Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez De Fonseca F, et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425:90–93.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Lo Verme J, Fu J, Astarita G, La Rana G, Russo R, Calignano A, et al. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharm. 2005;67:15–19.

    Article  CAS  Google Scholar 

  11. Cristino L, Becker T, Di Marzo V. Endocannabinoids and energy homeostasis: an update. Biofactors. 2014;40:389–97.

    Article  CAS  PubMed  Google Scholar 

  12. Esposito G, Capoccia E, Turco F, Palumbo I, Lu J, Steardo A, et al. Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-α activation. Gut. 2014;63:1300–12.

    Article  CAS  PubMed  Google Scholar 

  13. Hansen HS, Vana V. Non-endocannabinoid N-acylethanolamines and 2-monoacylglycerols in the intestine. Br J Pharm. 2019;176:1443–54.

    Article  CAS  Google Scholar 

  14. Rodriguez de Fonseca F, Navarro M, Gomez R, Escuredo L, Nava F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature. 2001;414:209–12.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Terrazzino S, Berto F, Dalle Carbonare M, Fabris M, Guiotto A, et al. Stearoylethanolamide exerts anorexic effects in mice via down-regulation of liver stearoyl-coenzyme A desaturase-1 mRNA expression. FASEB J. 2004;18:1580–2.

    Article  CAS  PubMed  Google Scholar 

  16. DiPatrizio NV. Endocannabinoids in the Gut. Cannabis Cannabinoid Res. 2016;1:67–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu J, Kim J, Oveisi F, Astarita G, Piomelli D. Targeted enhancement of oleoylethanolamide production in proximal small intestine induces across-meal satiety in rats. Am J Physiol Regul Integr Comp Physiol. 2008;295:R45–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Everard A, Plovier H, Rastelli M, Van Hul M, de Wouters d’Oplinter A, Geurts L, et al. Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat Commun. 2019;10:457.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Melis M, Pillolla G, Luchicchi A, Muntoni AL, Yasar S, Goldberg SR, et al. Endogenous Fatty Acid Ethanolamides Suppress Nicotine-Induced Activation of Mesolimbic Dopamine Neurons through Nuclear Receptors. J Neurosci. 2008;28:13985–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palese F, Pontis S, Realini N, Piomelli D. A protective role for N-acylphosphatidylethanolamine phospholipase D in 6-OHDA-induced neurodegeneration. Sci Rep. 2019;9:15927.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  21. Tevosian M, Todorov H, Lomazzo E, Bindila L, Ueda N, Bassetti D, et al. NAPE-PLD deletion in stress-TRAPed neurons results in an anxiogenic phenotype. Transl Psychiatry. 2023;13:152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morishita J, Okamoto Y, Tsuboi K, Ueno M, Sakamoto H, Maekawa N, et al. Regional distribution and age-dependent expression of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D in rat brain. J Neurochem. 2005;94:753–62.

    Article  CAS  PubMed  Google Scholar 

  23. Egertova M, Simon GM, Cravatt BF, Elphick MR. Localization of N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) expression in mouse brain: A new perspective on N-acylethanolamines as neural signaling molecules. J Comp Neurol. 2008;506:604–15.

    Article  CAS  PubMed  Google Scholar 

  24. Leishman E, Mackie K, Luquet S, Bradshaw HB. Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain. Biochim Biophys Acta. 2016;1861:491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mock ED, Mustafa M, Gunduz-Cinar O, Cinar R, Petrie GN, Kantae V, et al. Discovery of a NAPE-PLD inhibitor that modulates emotional behavior in mice. Nat Chem Biol. 2020;16:667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muccioli GG. Endocannabinoid biosynthesis and inactivation, from simple to complex. Drug Discov Today. 2010;15:474–83.

    Article  CAS  PubMed  Google Scholar 

  27. Leung D, Saghatelian A, Simon GM, Cravatt BF. Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry. 2006;45:4720–6.

    Article  CAS  PubMed  Google Scholar 

  28. Wangensteen T, Akselsen H, Holmen J, Undlien D, Retterstøl L. A common haplotype in NAPEPLD is associated with severe obesity in a Norwegian population-based cohort (the HUNT study). Obesity. 2011;19:612–7.

    Article  CAS  PubMed  Google Scholar 

  29. Doris JM, Millar SA, Idris I, O’Sullivan SE. Genetic polymorphisms of the endocannabinoid system in obesity and diabetes. Diabetes Obes Metab. 2019;21:382–7.

    Article  CAS  PubMed  Google Scholar 

  30. Sun F, Zhou J, Dai B, Qian T, Zeng J, Li X, et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods. 2020;17:1156–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berland C, Castel J, Terrasi R, Montalban E, Foppen E, Martin C, et al. Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis. Mol Psychiatry. 2022;27:2340–54.

    Article  CAS  PubMed  Google Scholar 

  32. Berland C, Montalban E, Perrin E, Di Miceli M, Nakamura Y, Martinat M, et al. Circulating Triglycerides Gate Dopamine-Associated Behaviors through DRD2-Expressing Neurons. Cell Metab. 2020;31:773–e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gangarossa G, Castell L, Castro L, Tarot P, Veyrunes F, Vincent P, et al. Contrasting patterns of ERK activation in the tail of the striatum in response to aversive and rewarding signals. J Neurochem. 2019;151:204–26.

    Article  CAS  PubMed  Google Scholar 

  34. Raboune S, Stuart JM, Leishman E, Takacs SM, Rhodes B, Basnet A, et al. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation. Front Cell Neurosci. 2014;8:195.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu J, Wang L, Harvey-White J, Huang BX, Kim HY, Luquet S, et al. Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology. 2008;54:1–7.

    Article  CAS  PubMed  Google Scholar 

  36. Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S, et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun. 2015;6:6495.

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Lallemand Y, Luria V, Haffner-Krausz R, Lonai P. Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase. Transgenic Res. 1998;7:105–12.

    Article  CAS  PubMed  Google Scholar 

  38. Giusti SA, Vercelli CA, Vogl AM, Kolarz AW, Pino NS, Deussing JM, et al. Behavioral phenotyping of Nestin-Cre mice: implications for genetic mouse models of psychiatric disorders. J Psychiatr Res. 2014;55:87–95.

    Article  PubMed  Google Scholar 

  39. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet. 1999;23:99–103.

    Article  CAS  PubMed  Google Scholar 

  40. Declercq J, Brouwers B, Pruniau VPEG, Stijnen P, de Faudeur G, Tuand K, et al. Metabolic and Behavioural Phenotypes in Nestin-Cre Mice Are Caused by Hypothalamic Expression of Human Growth Hormone. PLoS One. 2015;10:e0135502.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tellez LA, Han W, Zhang X, Ferreira TL, Perez IO, Shammah-Lagnado SJ, et al. Separate circuitries encode the hedonic and nutritional values of sugar. Nat Neurosci. 2016;19:465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limon P, Ren X, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science. 2013;341:800–2.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Rastelli M, Van Hul M, Terrasi R, Lefort C, Regnier M, Beiroa D, et al. Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis. Am J Physiol Endocrinol Metab. 2020;319:E647–E657.

    Article  CAS  PubMed  Google Scholar 

  44. Morales I, Berridge KC. ‘Liking’ and ‘wanting’ in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav. 2020;227:113152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Savell KE, Tuscher JJ, Zipperly ME, Duke CG, Phillips RA, Bauman AJ, et al. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. Sci Adv. 2020;6:eaba4221.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Phillips RA, Tuscher JJ, Black SL, Andraka E, Fitzgerald ND, Ianov L, et al. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Rep. 2022;39:110616.

    Article  CAS  PubMed  Google Scholar 

  47. Brichta L, Shin W, Jackson-Lewis V, Blesa J, Yap EL, Walker Z, et al. Identification of neurodegenerative factors using translatome-regulatory network analysis. Nat Neurosci. 2015;18:1325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aguila J, Cheng S, Kee N, Cao M, Wang M, Deng Q, et al. Spatial RNA Sequencing Identifies Robust Markers of Vulnerable and Resistant Human Midbrain Dopamine Neurons and Their Expression in Parkinson’s Disease. Front Mol Neurosci. 2021;14:699562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Montalban E, Walle R, Castel J, Ansoult A, Hassouna R, Foppen E, et al. The addiction-susceptibility TaqIA/Ankyrin repeat and kinase domain containing 1 kinase (ANKK1) controls reward and metabolism through dopamine receptor type 2 (D2R)-expressing neurons. Biol Psychiatry. 2023;94:424–36.

  50. Woodworth HL, Batchelor HM, Beekly BG, Bugescu R, Brown JA, Kurt G, et al. Neurotensin Receptor-1 Identifies a Subset of Ventral Tegmental Dopamine Neurons that Coordinates Energy Balance. Cell Rep. 2017;20:1881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fernandes MFA, Matthys D, Hryhorczuk C, Sharma S, Mogra S, Alquier T, et al. Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons. Cell Metab. 2015;22:741–9.

    Article  CAS  PubMed  Google Scholar 

  52. Medrano M-C, Hurel I, Mesguich E, Redon B, Stevens C, Georges F, et al. Exercise craving potentiates excitatory inputs to ventral tegmental area dopaminergic neurons. Addict Biol. 2021;26:e12967.

    Article  CAS  PubMed  Google Scholar 

  53. Muguruza C, Redon B, Fois GR, Hurel I, Scocard A, Nguyen C, et al. The motivation for exercise over palatable food is dictated by cannabinoid type-1 receptors. JCI Insight. 2019;4:e126190.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dubreucq S, Durand A, Matias I, Bénard G, Richard E, Soria-Gomez E, et al. Ventral tegmental area cannabinoid type-1 receptors control voluntary exercise performance. Biol Psychiatry. 2013;73:895–903.

    Article  CAS  PubMed  Google Scholar 

  55. Lunerti V, Li H, Benvenuti F, Shen Q, Domi A, Soverchia L, et al. The multitarget FAAH inhibitor/D3 partial agonist ARN15381 decreases nicotine self-administration in male rats. Eur J Pharmacol. 2022;928:175088.

    Article  CAS  PubMed  Google Scholar 

  56. Melis M, Scheggi S, Carta G, Madeddu C, Lecca S, Luchicchi A, et al. PPARα regulates cholinergic-driven activity of midbrain dopamine neurons via a novel mechanism involving α7 nicotinic acetylcholine receptors. J Neurosci. 2013;33:6203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Melis M, Carta S, Fattore L, Tolu S, Yasar S, Goldberg SR, et al. Peroxisome proliferator-activated receptors-alpha modulate dopamine cell activity through nicotinic receptors. Biol Psychiatry. 2010;68:256–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hempel B, Crissman M, Pari S, Klein B, Bi G-H, Alton H, et al. PPARα and PPARγ are expressed in midbrain dopamine neurons and modulate dopamine- and cannabinoid-mediated behavior in mice. Mol Psychiatry. 2023. https://doi.org/10.1038/s41380-023-02182-0.

  59. Guillaumin MCC, Viskaitis P, Bracey E, Burdakov D, Peleg-Raibstein D. Disentangling the role of NAc D1 and D2 cells in hedonic eating. Mol Psychiatry. 2023;28:3531–47.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Grace AA. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction. 2000;95:S119–128.

    Article  PubMed  Google Scholar 

  61. Tsai H-C, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009;324:1080–4.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Floresco SB, West AR, Ash B, Moore H, Grace AA. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci. 2003;6:968–73.

    Article  CAS  PubMed  Google Scholar 

  63. Kreitzer AC, Regehr WG. Retrograde signaling by endocannabinoids. Curr Opin Neurobiol. 2002;12:324–30.

    Article  CAS  PubMed  Google Scholar 

  64. Nyilas R, Dudok B, Urbán GM, Mackie K, Watanabe M, Cravatt BF, et al. Enzymatic machinery for endocannabinoid biosynthesis associated with calcium stores in glutamatergic axon terminals. J Neurosci. 2008;28:1058–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pupe S, Wallén-Mackenzie Å. Cre-driven optogenetics in the heterogeneous genetic panorama of the VTA. Trends Neurosci. 2015;38:375–86.

    Article  CAS  PubMed  Google Scholar 

  66. Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73–85.

    Article  CAS  PubMed  Google Scholar 

  67. Wang H-L, Qi J, Zhang S, Wang H, Morales M. Rewarding Effects of Optical Stimulation of Ventral Tegmental Area Glutamatergic Neurons. J Neurosci. 2015;35:15948–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Root DH, Barker DJ, Estrin DJ, Miranda-Barrientos JA, Liu B, Zhang S, et al. Distinct Signaling by Ventral Tegmental Area Glutamate, GABA, and Combinatorial Glutamate-GABA Neurons in Motivated Behavior. Cell Rep. 2020;32:108094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zell V, Steinkellner T, Hollon NG, Warlow SM, Souter E, Faget L, et al. VTA Glutamate Neuron Activity Drives Positive Reinforcement Absent Dopamine Co-release. Neuron. 2020;107:864–e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. O’Connor EC, Kremer Y, Lefort S, Harada M, Pascoli V, Rohner C, et al. Accumbal D1R Neurons Projecting to Lateral Hypothalamus Authorize Feeding. Neuron. 2015;88:553–64.

    Article  PubMed  Google Scholar 

  71. Diepenbroek C, Rijnsburger M, van Irsen AAS, Eggels L, Kisner A, Foppen E, et al. Dopamine in the nucleus accumbens shell controls systemic glucose metabolism via the lateral hypothalamus and hepatic vagal innervation in rodents. Metabolism. 2023;150:155696.

    Article  PubMed  Google Scholar 

  72. Boekhoudt L, Omrani A, Luijendijk MCM, Wolterink-Donselaar IG, Wijbrans EC, van der Plasse G, et al. Chemogenetic activation of dopamine neurons in the ventral tegmental area, but not substantia nigra, induces hyperactivity in rats. Eur Neuropsychopharmacol. 2016;26:1784–93.

    Article  CAS  PubMed  Google Scholar 

  73. Perez-Bonilla P, Santiago-Colon K, Matasovsky J, Ramirez-Virella J, Khan R, Garver H, et al. Activation of ventral tegmental area neurotensin Receptor-1 neurons promotes weight loss. Neuropharmacology. 2021;195:108639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mietlicki-Baase EG, Reiner DJ, Cone JJ, Olivos DR, McGrath LE, Zimmer DJ, et al. Amylin modulates the mesolimbic dopamine system to control energy balance. Neuropsychopharmacology. 2015;40:372–85.

    Article  CAS  PubMed  Google Scholar 

  75. Fanelli F, Mezzullo M, Repaci A, Belluomo I, Ibarra Gasparini D, Di Dalmazi G, et al. Profiling plasma N-Acylethanolamine levels and their ratios as a biomarker of obesity and dysmetabolism. Mol Metab. 2018;14:82–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jumpertz R, Guijarro A, Pratley RE, Piomelli D, Krakoff J. Central and peripheral endocannabinoids and cognate acylethanolamides in humans: association with race, adiposity, and energy expenditure. J Clin Endocrinol Metab. 2011;96:787–91.

    Article  CAS  PubMed  Google Scholar 

  77. Mazier W, Saucisse N, Gatta-Cherifi B, Cota D. The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease. Trends Endocrinol Metab. 2015;26:524–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Olja Kacanski for administrative support, Isabelle Le Parco, Aurélie Djemat, Daniel Quintas, Magguy Boa, Ludovic Maingault, Angélique Dauvin and Florianne Michel for animals’ care and genotyping. We thank Dr. Etienne Doumazane for clustering analyses and Dr. Sylvie Robin for the gift of Villin-CreERT2 mice. We acknowledge the technical platform Functional and Physiological Exploration platform (FPE) of the Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, and the animal core facility “Buffon” of the Université Paris Cité/Institut Jacques Monod.

Funding

This work was supported by the Nutricia Research Foundation (#2022-E7), Agence Nationale de la Recherche (ANR-21-CE14-0021-01, ANR-23-CE14-0014-02, ANR-19-CE37-0020-02), Fondation pour la Recherche Médicale (Équipe FRM #EQU202003010155), Fédération pour la Recherche sur le Cerveau and Association France Parkinson, Institut universtaire de France, the Modern Diet and Physiology Research Center (MDPRC), Université Paris Cité, US National Institutes of Health (DA047858), and CNRS. GL is supported by a China Scholarship Council (CSC) fellowship. OO is supported by an FRM fellowship. PDC is recipient of grants from FNRS (FRFS-WELBIO: WELBIO-CR-2022A-02, EOS: program no. 40007505) and La Caixa (NeuroGut). AE is research associate at FNRS and the recipient of grants from FNRS (FRFS-WELBIO: WELBIO-CR-2019S-03R, FNRS: J.0075.22).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GG and SL; Investigation: JC, GL, OO, AE, EL, HB, KM, PDC, SL, GG; Formal Data Analysis: JC, SL, GG, HB, KM, AE; Resources: GG, SL, PDC; Funding acquisition: GG, SL, PDC; Supervision: GG and SL; Writing – original draft: GG and SL; Writing – review & editing: all authors.

Corresponding authors

Correspondence to Serge Luquet or Giuseppe Gangarossa.

Ethics declarations

Competing interests

PDC and AE are inventors on patent applications dealing with the use of specific bacteria and components in the treatment of different diseases. PDC was co-founder of The Akkermansia Company SA and Enterosys. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castel, J., Li, G., Onimus, O. et al. NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02427-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02427-6

Search

Quick links