Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Altered Rbfox1-Vamp1 pathway and prefrontal cortical dysfunction in schizophrenia

Abstract

Deficient gamma oscillations in prefrontal cortex (PFC) of individuals with schizophrenia appear to involve impaired inhibitory drive from parvalbumin-expressing interneurons (PVIs). Inhibitory drive from PVIs is regulated, in part, by RNA binding fox-1 homolog 1 (Rbfox1). Rbfox1 is spliced into nuclear or cytoplasmic isoforms, which regulate alternative splicing or stability of their target transcripts, respectively. One major target of cytoplasmic Rbfox1 is vesicle associated membrane protein 1 (Vamp1). Vamp1 mediates GABA release probability from PVIs, and the loss of Rbfox1 reduces Vamp1 levels which in turn impairs cortical inhibition. In this study, we investigated if the Rbfox1-Vamp1 pathway is altered in PVIs in PFC of individuals with schizophrenia by utilizing a novel strategy that combines multi-label in situ hybridization and immunohistochemistry. In the PFC of 20 matched pairs of schizophrenia and comparison subjects, cytoplasmic Rbfox1 protein levels were significantly lower in PVIs in schizophrenia and this deficit was not attributable to potential methodological confounds or schizophrenia-associated co-occurring factors. In a subset of this cohort, Vamp1 mRNA levels in PVIs were also significantly lower in schizophrenia and were predicted by lower cytoplasmic Rbfox1 protein levels across individual PVIs. To investigate the functional impact of Rbfox1-Vamp1 alterations in schizophrenia, we simulated the effect of lower GABA release probability from PVIs on gamma power in a computational model network of pyramidal neurons and PVIs. Our simulations showed that lower GABA release probability reduces gamma power by disrupting network synchrony while minimally affecting network activity. Finally, lower GABA release probability synergistically interacted with lower strength of inhibition from PVIs in schizophrenia to reduce gamma power non-linearly. Together, our findings suggest that the Rbfox1-Vamp1 pathway in PVIs is impaired in schizophrenia and that this alteration likely contributes to deficient PFC gamma power in the illness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cytoplasmic Rbfox1 isoform is enriched in PVIs in human PFC.
Fig. 2: Protein levels of cytoplasmic Rbfox1 in PVIs are lower in PFC of schizophrenia.
Fig. 3: Lower cytoplasmic Rbfox1 levels in PVIs in schizophrenia are not due to methodological confounds or schizophrenia-associated co-occurring factors.
Fig. 4: Lower cytoplasmic Rbfox1 protein level predicts lower Vamp1 mRNA level in PVIs.
Fig. 5: Lower release probability of GABA from PVIs reduces gamma power in a computational model network.

Similar content being viewed by others

Code availability

All imaging analyses and computational simulations were performed in MATLAB. All codes are available upon request.

References

  1. Kahn RS, Keefe RS. Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry. 2013;70:1107–12.

    Article  PubMed  Google Scholar 

  2. McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-An Overview. JAMA Psychiatry. 2020;77:201–10.

    Article  PubMed  Google Scholar 

  3. Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–24.

    Article  CAS  PubMed  Google Scholar 

  4. Miller EK, Lundqvist M, Bastos AM. Working Memory 2.0. Neuron. 2018;100:463–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho RY, Konecky RO, Carter CS. Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci USA. 2006;103:19878–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen CM, Stanford AD, Mao X, Abi-Dargham A, Shungu DC, Lisanby SH, et al. GABA level, gamma oscillation, and working memory performance in schizophrenia. Neuroimage Clin. 2014;4:531–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Minzenberg MJ, Firl AJ, Yoon JH, Gomes GC, Reinking C, Carter CS. Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia. Neuropsychopharmacology. 2010;35:2590–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gonzalez-Burgos G, Cho RY, Lewis DA. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry. 2015;77:1031–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buzsaki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Curley AA, Arion D, Volk DW, Asafu-Adjei JK, Sampson AR, Fish KN, et al. Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry. 2011;168:921–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Glausier JR, Fish KN, Lewis DA. Altered parvalbumin basket cell inputs in the dorsolateral prefrontal cortex of schizophrenia subjects. Mol Psychiatry. 2014;19:30–6.

    Article  CAS  PubMed  Google Scholar 

  12. Fish KN, Rocco BR, DeDionisio AM, Dienel SJ, Sweet RA, Lewis DA. Altered Parvalbumin Basket Cell Terminals in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biol Psychiatry. 2021;90:47–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000;57:1061–9.

    Article  CAS  PubMed  Google Scholar 

  14. Fung SJ, Webster MJ, Sivagnanasundaram S, Duncan C, Elashoff M, Weickert CS. Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am J Psychiatry. 2010;167:1479–88.

    Article  PubMed  Google Scholar 

  15. Berryer MH, Chattopadhyaya B, Xing P, Riebe I, Bosoi C, Sanon N, et al. Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function. Nat Commun. 2016;7:13340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459:698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung DW, Geramita MA, Lewis DA. Synaptic variability and cortical gamma oscillation power in schizophrenia. Am J Psychiatry. 2022;179:277–87.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vuong CK, Wei W, Lee JA, Lin CH, Damianov A, de la Torre-Ubieta L, et al. Rbfox1 Regulates Synaptic Transmission through the Inhibitory Neuron-Specific vSNARE Vamp1. Neuron. 2018;98:127–41.e127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wamsley B, Jaglin XH, Favuzzi E, Quattrocolo G, Nigro MJ, Yusuf N, et al. Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons. Neuron. 2018;100:846–59.e847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin Y, Suzuki H, Maegawa S, Endo H, Sugano S, Hashimoto K, et al. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J. 2003;22:905–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuroyanagi H. Fox-1 family of RNA-binding proteins. Cell Mol Life Sci. 2009;66:3895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee JA, Damianov A, Lin CH, Fontes M, Parikshak NN, Anderson ES, et al. Cytoplasmic Rbfox1 Regulates the Expression of Synaptic and Autism-Related Genes. Neuron. 2016;89:113–28.

    Article  CAS  PubMed  Google Scholar 

  23. Fogel BL, Wexler E, Wahnich A, Friedrich T, Vijayendran C, Gao F, et al. RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum Mol Genet. 2012;21:4171–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gehman LT, Stoilov P, Maguire J, Damianov A, Lin CH, Shiue L, et al. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat Genet. 2011;43:706–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Leary A, Fernandez-Castillo N, Gan G, Yang Y, Yotova AY, Kranz TM, et al. Behavioural and functional evidence revealing the role of RBFOX1 variation in multiple psychiatric disorders and traits. Mol Psychiatry. 2022;27:4464–73.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee JA, Tang ZZ, Black DL. An inducible change in Fox-1/A2BP1 splicing modulates the alternative splicing of downstream neuronal target exons. Genes Dev. 2009;23:2284–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Damianov A, Ying Y, Lin CH, Lee JA, Tran D, Vashisht AA, et al. Rbfox Proteins Regulate Splicing as Part of a Large Multiprotein Complex LASR. Cell. 2016;165:606–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trimble WS, Cowan DM, Scheller RH. VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci USA. 1988;85:4538–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zimmermann J, Trimbuch T, Rosenmund C. Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons. J Neurophysiol. 2014;112:1559–65.

    Article  CAS  PubMed  Google Scholar 

  30. Chung DW, Fish KN, Lewis DA. Pathological Basis for Deficient Excitatory Drive to Cortical Parvalbumin Interneurons in Schizophrenia. Am J Psychiatry. 2016;173:1131–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. O’Connell AA, Hanson JA, McCaskill DC, Moore ET, Lewis DC, Grover N. Thermodynamic examination of pH and magnesium effect on U6 RNA internal loop. RNA. 2019;25:1779–92.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eggan SM, Lewis DA. Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: a regional and laminar analysis. Cereb Cortex. 2007;17:175–91.

    Article  PubMed  Google Scholar 

  33. Pierri JN, Chaudry AS, Woo TU, Lewis DA. Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry. 1999;156:1709–19.

    Article  CAS  PubMed  Google Scholar 

  34. Nakahata S, Kawamoto S. Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res. 2005;33:2078–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chung DW, Wills ZP, Fish KN, Lewis DA. Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex. Proc Natl Acad Sci USA. 2017;114:E629–E637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu XD, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, et al. Top 10 algorithms in data mining. Knowl Inf Syst. 2008;14:1–37.

    Article  Google Scholar 

  37. Conde F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA. Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J Comp Neurol. 1994;341:95–116.

    Article  CAS  PubMed  Google Scholar 

  38. Foldy C, Darmanis S, Aoto J, Malenka RC, Quake SR, Sudhof TC. Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons. Proc Natl Acad Sci USA. 2016;113:E5222–5231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dereli AS, Bailey EJ, Kumar NN. Combining Multiplex Fluorescence in situ Hybridization with Fluorescent Immunohistochemistry on Fresh Frozen or Fixed Mouse Brain Sections. J Vis Exp. 2021;172:e61709.

  40. Chung DW, Chung Y, Bazmi HH, Lewis DA. Altered ErbB4 splicing and cortical parvalbumin interneuron dysfunction in schizophrenia and mood disorders. Neuropsychopharmacology. 2018;43:2478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chung DW, Volk DW, Arion D, Zhang Y, Sampson AR, Lewis DA. Dysregulated ErbB4 Splicing in Schizophrenia: Selective Effects on Parvalbumin Expression. Am J Psychiatry. 2016;173:60–8.

    Article  PubMed  Google Scholar 

  42. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995;52:258–66.

    Article  CAS  PubMed  Google Scholar 

  43. Glausier JR, Lewis DA. Selective pyramidal cell reduction of GABA(A) receptor alpha1 subunit messenger RNA expression in schizophrenia. Neuropsychopharmacology. 2011;36:2103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beneyto M, Abbott A, Hashimoto T, Lewis DA. Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. Cereb cortex. 2011;21:999–1011.

    Article  PubMed  Google Scholar 

  45. Pardinas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362:eaat8127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, et al. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science. 2007;318:1645–7.

    Article  CAS  PubMed  Google Scholar 

  49. Patz S, Grabert J, Gorba T, Wirth MJ, Wahle P. Parvalbumin expression in visual cortical interneurons depends on neuronal activity and TrkB ligands during an Early period of postnatal development. Cereb Cortex. 2004;14:342–51.

    Article  PubMed  Google Scholar 

  50. Costain G, Lionel AC, Merico D, Forsythe P, Russell K, Lowther C, et al. Pathogenic rare copy number variants in community-based schizophrenia suggest a potential role for clinical microarrays. Hum Mol Genet. 2013;22:4485–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nassar LR, Barber GP, Benet-Pagès A, Casper J, Clawson H, Diekhans M, et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 2023;51:D1188–D1195.

    Article  CAS  PubMed  Google Scholar 

  52. Fazzari P, Paternain AV, Valiente M, Pla R, Lujan R, Lloyd K, et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature. 2010;464:1376–80.

    Article  CAS  PubMed  Google Scholar 

  53. Delevich K, Jaaro-Peled H, Penzo M, Sawa A, Li B. Parvalbumin Interneuron Dysfunction in a Thalamo-Prefrontal Cortical Circuit in Disc1 Locus Impairment Mice. eNeuro. 2020;7:ENEURO.0496–19.2020.

    Article  PubMed  Google Scholar 

  54. Druart M, Nosten-Bertrand M, Poll S, Crux S, Nebeling F, Delhaye C, et al. Elevated expression of complement C4 in the mouse prefrontal cortex causes schizophrenia-associated phenotypes. Mol Psychiatry. 2021;26:3489–501.

    Article  CAS  PubMed  Google Scholar 

  55. Nakata K, Lipska BK, Hyde TM, Ye T, Newburn EN, Morita Y, et al. DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc Natl Acad Sci USA. 2009;106:15873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Enwright JF, Lewis DA. Similarities in Cortical Transcriptome Alterations Between Schizophrenia and Bipolar Disorder Are Related to the Presence of Psychosis. Schizophr Bull. 2021;47:1442–51.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Kelly Rogers (University of Pittsburgh) for providing technical assistance. The University of Pittsburgh holds a Physician-Scientist Institutional Award from the Burroughs Wellcome Fund (Y.C.). This work was also supported by National Institutes of Health Grants MH103204 (D.A.L.) and MH043784 (D.A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Chung.

Ethics declarations

Competing interests

D.A.L. receives investigator-initiated research support from Merck. All other authors report no biomedical financial interests or potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, Y., Dienel, S.J., Belch, M.J. et al. Altered Rbfox1-Vamp1 pathway and prefrontal cortical dysfunction in schizophrenia. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02417-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02417-8

Search

Quick links