Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of transcranial magnetic stimulation on the human brain recorded with intracranial electrocorticography

Abstract

Transcranial magnetic stimulation (TMS) is increasingly used as a noninvasive technique for neuromodulation in research and clinical applications, yet its mechanisms are not well understood. Here, we present the neurophysiological effects of TMS using intracranial electrocorticography (iEEG) in neurosurgical patients. We first evaluated safety in a gel-based phantom. We then performed TMS-iEEG in 22 neurosurgical participants with no adverse events. We next evaluated intracranial responses to single pulses of TMS to the dorsolateral prefrontal cortex (dlPFC) (N = 10, 1414 electrodes). We demonstrate that TMS is capable of inducing evoked potentials both locally within the dlPFC and in downstream regions functionally connected to the dlPFC, including the anterior cingulate and insular cortex. These downstream effects were not observed when stimulating other distant brain regions. Intracranial dlPFC electrical stimulation had similar timing and downstream effects as TMS. These findings support the safety and promise of TMS-iEEG in humans to examine local and network-level effects of TMS with higher spatiotemporal resolution than currently available methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TMS reliably and safely induces intracranial neural responses.
Fig. 2: TMS induces local evoked potentials within the dlPFC that correlate with electrical field strength.
Fig. 3: TMS evokes downstream iTEPs within the ACC and Insula.
Fig. 4: dlPFC TMS evokes downstream iTEPs in the ACC in a functionally connected and site-specific manner.
Fig. 5: Direct electrical stimulation of the dorsolateral prefrontal cortex (dlPFC) elicits responses in anterior cingulate cortex (ACC) and insula.

Similar content being viewed by others

References

  1. Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci. 2013;16:838–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–99.

    Article  CAS  PubMed  Google Scholar 

  3. Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol. 2020;131:474–528.

    Article  PubMed  Google Scholar 

  4. Elias GJ, Boutet A, Parmar R, Wong EH, Germann J, Loh A, et al. Neuromodulatory treatments for psychiatric disease: A comprehensive survey of the clinical trial landscape. Brain Stimul. 2021;14:1393–403.

    Article  PubMed  Google Scholar 

  5. Romero MC, Davare M, Armendariz M, Janssen P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat Commun. 2019;10:2642.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  6. Mueller JK, Grigsby EM, Prevosto V, Petraglia FW III, Rao H, Deng ZD, et al. Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates. Nat Neurosci. 2014;17:1130–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moliadze V, Zhao Y, Eysel U, Funke K. Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol. 2003;553:665–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boes AD, Kelly MS, Trapp NT, Stern AP, Press DZ, Pascual-Leone A. Noninvasive Brain Stimulation: Challenges and Opportunities for a New Clinical Specialty. J Neuropsychiatry Clin Neurosci. 2018;30:173–9.

    Article  PubMed  Google Scholar 

  9. Chervyakov AV, Chernyavsky AY, Sinitsyn DO, Piradov MA. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci. 2015;9:303.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Keller CJ, Honey CJ, Mégevand P, Entz L, Ulbert I, Mehta AD. Mapping human brain networks with cortico-cortical evoked potentials. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130528.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Matsumoto R, Nair DR, Ikeda A, Fumuro T, LaPresto E, Mikuni N, et al. Parieto-frontal network in humans studied by cortico-cortical evoked potential. Hum Brain Mapp. 2012;33:2856–72.

    Article  PubMed  Google Scholar 

  12. Matsumoto R, Nair DR, LaPresto E, Najm I, Bingaman W, Shibasaki H, et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain. 2004;127:2316–30.

    Article  PubMed  Google Scholar 

  13. Keller CJ, Huang Y, Herrero JL, Fini ME, Du V, Lado FA, et al. Induction and Quantification of Excitability Changes in Human Cortical Networks. J Neurosci. 2018;38:5384–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang Y, Hajnal B, Entz L, Fabó D, Herrero JL, Mehta AD, et al. Intracortical Dynamics Underlying Repetitive Stimulation Predicts Changes in Network Connectivity. J Neurosci. 2019;39:6122–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chhatbar PY, Kautz SA, Takacs I, Rowland NC, Revuelta GJ, George MS, et al. Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo. Brain Stimul. 2018;11:727–33.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lafon B, Henin S, Huang Y, Friedman D, Melloni L, Thesen T, et al. Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nat Commun. 2017;8:1199.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  17. Opitz A, Falchier A, Yan CG, Yeagle EM, Linn GS, Megevand P, et al. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci Rep. 2016;6:31236.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Vöröslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernández-Ruiz A, et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun. 2018;9:483.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  19. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120:2008–39.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126:1071–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doyle Gaynor LMF, Kühn AA, Dileone M, Litvak V, Eusebio A, Pogosyan A, et al. Suppression of beta oscillations in the subthalamic nucleus following cortical stimulation in humans. Eur J Neurosci. 2008;28:1686–95.

    Article  PubMed Central  Google Scholar 

  22. Kühn AA, Trottenberg T, Kupsch A, Meyer B-U. Pseudo-bilateral hand motor responses evoked by transcranial magnetic stimulation in patients with deep brain stimulators. Clin Neurophysiol. 2002;113:341–5.

    Article  PubMed  Google Scholar 

  23. Kumar R, Chen R, Ashby P. Safety of transcranial magnetic stimulation in patients with implanted deep brain stimulators. Mov Disord. 1999;14:157–8.

    Article  CAS  PubMed  Google Scholar 

  24. Phielipp NM, Saha U, Sankar T, Yugeta A, Chen R. Safety of repetitive transcranial magnetic stimulation in patients with implanted cortical electrodes. An ex-vivo study and report of a case. Clin Neurophysiol. 2017;128:1109–15.

    Article  PubMed  Google Scholar 

  25. Udupa K, Bahl N, Ni Z, Gunraj C, Mazzella F, Moro E, et al. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson’s Disease. J Neurosci. 2016;36:396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wagner T, Gangitano M, Romero R, Théoret H, Kobayashi M, Anschel D, et al. Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain. Neurosci Lett. 2004;354:91–94.

    Article  CAS  PubMed  Google Scholar 

  27. Wessel JR, Diesburg DA, Chalkley NH, Greenlee JDW. A causal role for the human subthalamic nucleus in non-selective cortico-motor inhibition. Curr Biol. 2022;32:3785–91.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol. 2021;132:269–306.

    Article  PubMed  Google Scholar 

  29. Strafella AP, Vanderwerf Y, Sadikot AF. Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of subthalamic nucleus. Eur J Neurosci. 2004;20:2245–9.

    Article  PubMed  Google Scholar 

  30. Oya H, Howard MA, Magnotta VA, Kruger A, Griffiths TD, Lemieux L, et al. Mapping effective connectivity in the human brain with concurrent intracranial electrical stimulation and BOLD-fMRI. J Neurosci Methods. 2017;277:101–12.

    Article  PubMed  Google Scholar 

  31. Davis NJ. Variance in cortical depth across the brain surface: Implications for transcranial stimulation of the brain. Eur J Neurosci. 2021;53:996–1007.

    Article  CAS  PubMed  Google Scholar 

  32. Lu M, Ueno S. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation. PLoS One. 2017;12:e0178422.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gander PE, Kumar S, Sedley W, Nourski KV, Oya H, Kovach CK, et al. Direct electrophysiological mapping of human pitch-related processing in auditory cortex. Neuroimage. 2019;202:116076.

    Article  PubMed  Google Scholar 

  34. Nourski KV, Howard MA III. Invasive recordings in the human auditory cortex. Handb Clin Neurol. 2015;129:225–44.

    Article  PubMed  Google Scholar 

  35. Beam W, Borckardt JJ, Reeves ST, George MS. An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimul. 2009;2:50–54.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fried PJ, Rushmore RJ, Moss MB, Valero-Cabré A, Pascual-Leone A. Causal evidence supporting functional dissociation of verbal and spatial working memory in the human dorsolateral prefrontal cortex. Eur J Neurosci. 2014;39:1973–81.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Poorganji M, Zomorrodi R, Hawco C, Hill AT, Hadas I, Rajji TK, et al. Differentiating transcranial magnetic stimulation cortical and auditory responses via single pulse and paired pulse protocols: A TMS-EEG study. Clin Neurophysiol. 2021;132:1850–8.

    Article  PubMed  Google Scholar 

  38. Rocchi F, Oya H, Balezeau F, Billig AJ, Kocsis Z, Jenison RL, et al. Common fronto-temporal effective connectivity in humans and monkeys. Neuron. 2021;109:852–868.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Keller CJ, Bickel S, Entz L, Ulbert I, Milham MP, Kelly C, et al. Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proc Natl Acad Sci USA. 2011;108:10308–13.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Sawada M, Adolphs R, Dlouhy BJ, Jenison RL, Rhone AE, Kovach CK, et al. Mapping effective connectivity of human amygdala subdivisions with intracranial stimulation. Nat Commun. 2022;13:4909.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869.

    Article  PubMed  Google Scholar 

  42. Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 2007;164:177–90.

    Article  PubMed  Google Scholar 

  43. Kuncel AM, Grill WM. Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol. 2004;115:2431–41.

    Article  PubMed  Google Scholar 

  44. Dowdle LT, Brown TR, George MS, Hanlon CA. Single pulse TMS to the DLPFC, compared to a matched sham control, induces a direct, causal increase in caudate, cingulate, and thalamic BOLD signal. Brain Stimul. 2018;11:789–96.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rafiei F, Rahnev D. TMS Does Not Increase BOLD Activity at the Site of Stimulation: A Review of All Concurrent TMS-fMRI Studies. eNeuro. 2022;9:ENEURO.0163–22.2022.

    Article  PubMed  Google Scholar 

  46. Bergmann TO, Varatheeswaran R, Hanlon CA, Madsen KH, Thielscher A, Siebner HR. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement. NeuroImage. 2021;237:118093.

    Article  PubMed  Google Scholar 

  47. Jackson JB, Feredoes E, Rich AN, Lindner M, Woolgar A. Concurrent neuroimaging and neurostimulation reveals a causal role for dlPFC in coding of task-relevant information. Commun Biol. 2021;4:1–16.

    Article  Google Scholar 

  48. Rafiei F, Safrin M, Wokke ME, Lau H, Rahnev D. Transcranial magnetic stimulation alters multivoxel patterns in the absence of overall activity changes. Hum Brain Mapp. 2021;42:3804–20.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Turi Z, Normann C, Domschke K, Vlachos A. Transcranial Magnetic Stimulation in Psychiatry: Is There a Need for Electric Field Standardization? Front Hum Neurosci. 2021;15:639640.

    Article  PubMed  PubMed Central  Google Scholar 

  50. De Ridder D, Vanneste S, Kovacs S, Sunaert S, Dom G. Transient alcohol craving suppression by rTMS of dorsal anterior cingulate: an fMRI and LORETA EEG study. Neurosci Lett. 2011;496:5–10.

    Article  PubMed  Google Scholar 

  51. Hadas I, Sun Y, Lioumis P, Zomorrodi R, Jones B, Voineskos D, et al. Association of Repetitive Transcranial Magnetic Stimulation Treatment With Subgenual Cingulate Hyperactivity in Patients With Major Depressive Disorder: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open. 2019;2:e195578.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kito S, Hasegawa T, Takamiya A, Noda T, Nakagome K, Higuchi T, et al. Transcranial Magnetic Stimulation Modulates Resting EEG Functional Connectivity Between the Left Dorsolateral Prefrontal Cortex and Limbic Regions in Medicated Patients With Treatment-Resistant Depression. J Neuropsychiatry Clin Neurosci. 2017;29:155–9.

    Article  PubMed  Google Scholar 

  53. Lan MJ, Chhetry BT, Liston C, Mann JJ, Dubin M. Transcranial Magnetic Stimulation of Left Dorsolateral Prefrontal Cortex Induces Brain Morphological Changes in Regions Associated with a Treatment Resistant Major Depressive Episode: An Exploratory Analysis. Brain Stimul. 2016;9:577–83.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Baeken C, Marinazzo D, Wu GR, Van Schuerbeek P, De Mey J, Marchetti I, et al. Accelerated HF-rTMS in treatment-resistant unipolar depression: Insights from subgenual anterior cingulate functional connectivity. World J Biol Psychiatry. 2014;15:286–97.

    Article  PubMed  Google Scholar 

  55. Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012;72:595–603.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ge R, Downar J, Blumberger DM, Daskalakis ZJ, Vila-Rodriguez F. Functional connectivity of the anterior cingulate cortex predicts treatment outcome for rTMS in treatment-resistant depression at 3-month follow-up. Brain Stimul. 2020;13:206–14.

    Article  PubMed  Google Scholar 

  57. Tik M, Hoffmann A, Sladky R, Tomova L, Hummer A, de Lara LN, et al. Towards understanding rTMS mechanism of action: Stimulation of the DLPFC causes network-specific increase in functional connectivity. NeuroImage. 2017;162:289–96.

    Article  PubMed  Google Scholar 

  58. Luber B, Davis SW, Deng ZD, Murphy D, Martella A, Peterchev AV, et al. Using diffusion tensor imaging to effectively target TMS to deep brain structures. NeuroImage. 2022;249:118863.

    Article  PubMed  Google Scholar 

  59. Oathes DJ, Zimmerman JP, Duprat R, Japp SS, Scully M, Rosenberg BM, et al. Resting fMRI-guided TMS results in subcortical and brain network modulation indexed by interleaved TMS/fMRI. Exp Brain Res. 2021;239:1165–78.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15:85–93.

    Article  PubMed  Google Scholar 

  61. Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry. 2015;72:305–15.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bench CJ, Friston KJ, Brown RG, Scott LC, Frackowiak RS, Dolan RJ. The anatomy of melancholia-focal abnormalities of cerebral blood flow in major depression. Psychol Med. 1992;22:607–15.

    Article  CAS  PubMed  Google Scholar 

  63. Drevets WC. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386:824–7.

    Article  CAS  PubMed  ADS  Google Scholar 

  64. George MS, Ketter TA, Parekh PI, Rosinsky N, Ring HA, Pazzaglia PJ, et al. Blunted left cingulate activation in mood disorder subjects during a response interference task (the Stroop). J Neuropsychiatry Clin Neurosci. 1997;9:55–63.

    Article  CAS  PubMed  Google Scholar 

  65. Ito H, Kawashima R, Awata S, Ono S, Sato K, Goto R, et al. Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. J Nucl Med. 1996;37:410–4.

    CAS  PubMed  Google Scholar 

  66. Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci. 1997;9:471–81.

    Article  CAS  PubMed  Google Scholar 

  67. Trapp NT, Bruss JE, Manzel K, Grafman J, Tranel D, Boes AD. Large-scale lesion symptom mapping of depression identifies brain regions for risk and resilience. Brain. 2023;146:1672–85.

    Article  PubMed  Google Scholar 

  68. Bijanki KR, Manns JR, Inman CS, Choi KS, Harati S, Pedersen NP, et al. Cingulum stimulation enhances positive affect and anxiolysis to facilitate awake craniotomy. J Clin Invest. 2019;129:1152–66.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ebert D, Feistel H, Barocka A. Effects of sleep deprivation on the limbic system and the frontal lobes in affective disorders: a study with Tc-99m-HMPAO SPECT. Psychiatry Res. 1991;40:247–51.

    Article  CAS  PubMed  Google Scholar 

  70. Wu JC, Gillin JC, Buchsbaum MS, Hershey T, Johnson JC, Bunney WE Jr. Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry. 1992;149:538–43.

    Article  CAS  PubMed  Google Scholar 

  71. Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wiegand M, et al. Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatry. 1999;156:1149–58.

    Article  CAS  PubMed  Google Scholar 

  72. Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, Jonides J. Depression, rumination and the default network. Soc Cogn Affect Neurosci. 2011;6:548–55.

    Article  PubMed  Google Scholar 

  73. Grimm S, Boesiger P, Beck J, Schuepbach D, Bermpohl F, Walter M, et al. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology. 2009;34:932–43.

    Article  PubMed  Google Scholar 

  74. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, et al. The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA. 2009;106:1942–7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Chen AC, Oathes DJ, Chang C, Bradley T, Zhou ZW, Williams LM, et al. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci USA. 2013;110:19944–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Fu Y, Long Z, Luo Q, Xu Z, Xiang Y, Du W, et al. Functional and Structural Connectivity Between the Left Dorsolateral Prefrontal Cortex and Insula Could Predict the Antidepressant Effects of Repetitive Transcranial Magnetic Stimulation. Front Neurosci. 2021;15:645936.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tang Y, Jiao X, Wang J, Zhu T, Zhou J, Qian Z, et al. Dynamic Functional Connectivity Within the Fronto-Limbic Network Induced by Intermittent Theta-Burst Stimulation: A Pilot Study. Front Neurosci. 2019;13:944.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Williams LM. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry. 2016;3:472–80.

    Article  PubMed  PubMed Central  Google Scholar 

  79. George MS, Lisanby SH, Avery D, McDonald WM, Durkalski V, Pavlicova M, et al. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch Gen Psychiatry. 2010;67:507–16.

    Article  PubMed  Google Scholar 

  80. O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62:1208–16.

    Article  PubMed  Google Scholar 

  81. Trapp NT, Bruss J, Johnson MK, Uitermarkt BD, Garrett L, Heinzerling A, et al. Reliability of targeting methods in TMS for depression: Beam F3 vs. 5.5 cm. Brain Stimul. 2020;13:578–81.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, et al. Precision Functional Mapping of Individual Human Brains. Neuron. 2017;95:791–807.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pereira FR, Alessio A, Sercheli MS, Pedro T, Bilevicius E, Rondina JM, et al. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI. BMC Neurosci. 2010;11:66.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bettus G, Ranjeva JP, Wendling F, Bénar CG, Confort-Gouny S, Régis J, et al. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations. PLoS One. 2011;6:e20071.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Pittau F, Grova C, Moeller F, Dubeau F, Gotman J. Patterns of altered functional connectivity in mesial temporal lobe epilepsy. Epilepsia. 2012;53:1013–23.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

First, we thank the neurosurgery patients who volunteered in this research. We also thank Christopher Kovach, Ariane Rhone, Haiming Chen, and Benjamin Pace for their assistance with image processing, coordinating, and conducting the experiments.

Funding

This research was supported by NIMH R01MH132074, R21MH120441 and 5R01dC004290-20. J.B.W. was supported by F30MH119763 and the Mark and Mary Stevens Interdisciplinary Graduate Fellowship. C.J.K was supported by R01MH126639, R01MH129018, and a Burroughs Wellcome Fund Career Award for Medical Scientists. A.D.B. was also supported by R01NS114405. N.T.T. was supported by 5T32-MH019113. We also thank Roy J. Carver Trust for funding this research. This work was conducted, in part, on an MRI instrument funded by 1S10OD025025-01.

Author information

Authors and Affiliations

Authors

Contributions

JBW, JEB, HO, CJK, and ADB conceived of the study. JBW and UH performed electrophysiology analyses. JEB performed imaging and electric field simulation analyses. HO performed safety testing and analyses and participated in experimental testing with TMS and intracranial stimulation. BDU, NTT, and PEG participated in experimental testing. MH helped with study design, safety, and subject recruitment. All authors contributed to writing and editing the manuscript. ADB and CJK jointly supervised all aspects of the study.

Corresponding author

Correspondence to Aaron D. Boes.

Ethics declarations

Competing interests

CJK currently holds equity in Alto Neurosciences, Inc. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.B., Hassan, U., Bruss, J.E. et al. Effects of transcranial magnetic stimulation on the human brain recorded with intracranial electrocorticography. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02405-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02405-y

Search

Quick links