Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of blood metabolites associated with risk of Alzheimer’s disease by integrating genomics and metabolomics data

Abstract

Specific metabolites have been reported to be potentially associated with Alzheimer’s disease (AD) risk. However, the comprehensive understanding of roles of metabolite biomarkers in AD etiology remains elusive. We performed a large AD metabolome-wide association study (MWAS) by developing blood metabolite genetic prediction models. We evaluated associations between genetically predicted levels of metabolites and AD risk in 39,106 clinically diagnosed AD cases, 46,828 proxy AD and related dementia (proxy-ADD) cases, and 401,577 controls. We further conducted analyses to determine microbiome features associated with the detected metabolites and characterize associations between predicted microbiome feature levels and AD risk. We identified fourteen metabolites showing an association with AD risk. Five microbiome features were further identified to be potentially related to associations of five of the metabolites. Our study provides new insights into the etiology of AD that involves blood metabolites and gut microbiome, which warrants further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Fourteen metabolites whose genetically predicted levels in blood are associated with AD risk.
Fig. 3: Selected aspects of dehydroepiandrosterone (DHEA) metabolism.

Similar content being viewed by others

Data availability

Individual level genotype and metabolite were available from Twins UK scientific community. Complete summary statistics of Alzheimer’s disease was downloaded from the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/) under accession no. GCST90027158. Complete summary statistics of microbial taxa could be downloaded from the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/) from accession GCST90032172 to GCST90032644. The scripts and genetic prediction models are available at https://github.com/Arthur1021/Metabolites-prediction-models.

References

  1. GBD 2019 Dementia Forcasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7:e105–e125.

  2. Mosconi L, Berti V, Glodzik L, Pupi A, De Santi S, de Leon MJ. Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging. J Alzheimer’s Dis. 2010;20:843–54.

    Article  Google Scholar 

  3. Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin Transl Imaging. 2013;1:217–33.

    Article  Google Scholar 

  4. Kuehn BM. In Alzheimer research, glucose metabolism moves to center stage. JAMA. 2020;323:297–9.

    Article  PubMed  Google Scholar 

  5. Demarest TG, Varma VR, Estrada D, Babbar M, Basu S, Mahajan UV, et al. Biological sex and DNA repair deficiency drive Alzheimer’s disease via systemic metabolic remodeling and brain mitochondrial dysfunction. Acta Neuropathol. 2020;140:25–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liang Y, Xie S, He Y, Xu M, Qiao X, Zhu Y, et al. Kynurenine pathway metabolites as biomarkers in Alzheimer’s disease. Dis Markers. 2022;2022:9484217.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abidin FNZ, Wells HRR, Altmann A, Dawson SJ. Hearing difficulty is linked to Alzheimer’s disease by common genetic vulnerability, not shared genetic architecture. NPJ Aging Mech Dis. 2021;7:1–8.

    Article  Google Scholar 

  8. Gu J. Detecting genetic similarity between complex human traits by exploring their common molecular mechanism. San Francisco: University of California; 2019.

  9. Joshi P, Perni M, Limbocker R, Mannini B, Casford S, Chia S, et al. Two human metabolites rescue a C. elegans model of Alzheimer’s disease via a cytosolic unfolded protein response. Commun Biol. 2021;4:843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93:1803–45.

    Article  CAS  PubMed  Google Scholar 

  11. Pocivavsek A, Notarangelo FM, Wu H-Q, Bruno JP, Schwarcz R. Astrocytes as pharmacological targets in the treatment of schizophrenia: focus on kynurenic acid. Handb Behav Neurosci. 2016;23:423–43.

  12. Luo S, Feofanova EV, Tin A, Tung S, Rhee EP, Coresh J, et al. Genome-wide association study of serum metabolites in the African American Study of Kidney Disease and Hypertension. Kidney Int. 2021;100:430–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bar N, Korem T, Weissbrod O, Zeevi D, Rothschild D, Leviatan S, et al. A reference map of potential determinants for the human serum metabolome. Nature. 2020;588:135–40.

    Article  PubMed  Google Scholar 

  14. Chadeau-Hyam M, Ebbels TMD, Brown IJ, Chan Q, Stamler J, Huang CC, et al. Metabolic profiling and the metabolome-wide association study: significance level for biomarker identification. J Proteome Res. 2010;9:4620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Varma VR, Oommen AM, Varma S, Casanova R, An Y, Andrews RM, et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med. 2018;15:e1002482.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Casanova R, Varma S, Simpson B, Kim M, An Y, Saldana S, et al. Blood metabolite markers of preclinical Alzheimer’s disease in two longitudinally followed cohorts of older individuals. Alzheimer’s Dement. 2016;12:815–22.

    Article  Google Scholar 

  17. Lord J, Jermy B, Green R, Wong A, Xu J, Legido-Quigley C, et al. Mendelian randomization identifies blood metabolites previously linked to midlife cognition as causal candidates in Alzheimer’s disease. Proc Natl Acad Sci. 2021;118:e2009808118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huo Z, Yu L, Yang J, Zhu Y, Bennett DA, Zhao J. Brain and blood metabolome for Alzheimer’s dementia: findings from a targeted metabolomics analysis. Neurobiol Aging. 2020;86:123–33.

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Amin N, Sproviero W, Arnold M, Batra R, Bonnechere B, et al. Longitudinal analysis of UK Biobank participants suggests age and APOE-dependent alterations of energy metabolism in development of dementia. MedRxiv. 2022. https://doi.org/10.1101/2022.02.25.22271530.

  20. van der Lee SJ, Teunissen CE, Pool R, Shipley MJ, Teumer A, Chouraki V, et al. Circulating metabolites and general cognitive ability and dementia: Evidence from 11 cohort studies. Alzheimer’s Dement. 2018;14:707–22.

    Article  Google Scholar 

  21. Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46:543–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Draisma HHM, Pool R, Kobl M, Jansen R, Petersen A-K, Vaarhorst AAM, et al. Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nat Commun. 2015;6:7208.

    Article  CAS  PubMed  Google Scholar 

  23. Long T, Hicks M, Yu HC, Biggs WH, Kirkness EF, Menni C, et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat Genet. 2017;49:568–78.

    Article  CAS  PubMed  Google Scholar 

  24. Yang Y, Wu L, Shu X-O, Cai Q, Shu X, Li B, et al. Genetically predicted levels of DNA methylation biomarkers and breast cancer risk: data from 228 951 women of European descent. J Natl Cancer Inst. 2020;112:295–304.

    Article  PubMed  Google Scholar 

  25. Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimer’s Dis. 2017;58:1–15.

    Article  Google Scholar 

  26. Moayyeri A, Hammond CJ, Hart DJ, Spector TD. The UK adult twin registry (twinsUK resource). Twin Res Hum Genet. 2013;16:144–9.

    Article  PubMed  Google Scholar 

  27. McCaw ZR, Lane JM, Saxena R, Redline S, Lin X. Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies. Biometrics. 2020;76:1262–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:2074–93.

    Article  CAS  Google Scholar 

  29. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun Y, Zhu J, Zhou D, Canchi S, Wu C, Cox NJ, et al. A transcriptome-wide association study of Alzheimer’s disease using prediction models of relevant tissues identifies novel candidate susceptibility genes. Genome Med. 2021;13:1–11.

    Article  Google Scholar 

  32. Liu D, Zhu J, Zhao T, Sharapov S, Tiys E, Wu L. Associations between genetically predicted plasma N-glycans and prostate cancer risk: analysis of over 140,000 European descendants. Pharmgenomics Pers Med. 2021;14:1211.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu J, Yang Y, Kisiel JB, Mahoney DW, Michaud DS, Guo X, et al. Integrating genome and methylome data to identify candidate DNA methylation biomarkers for pancreatic cancer risk. Cancer Epidemiol Prev Biomark. 2021;30:2079–87.

    Article  CAS  Google Scholar 

  34. Zhu J, O’mara TA, Liu D, Setiawan VW, Glubb D, Spurdle AB, et al. Associations between genetically predicted circulating protein concentrations and endometrial cancer risk. Cancers. 2021;13:2088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu D, Zhou D, Sun Y, Zhu J, Ghoneim D, Wu C, et al. A transcriptome-wide association study identifies candidate susceptibility genes for pancreatic cancer risk. Cancer Res. 2020;80:4346–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhattacharya A, Li Y, Love MI. MOSTWAS: multi-omic strategies for transcriptome-wide association studies. PLoS Genet. 2021;17:e1009398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54:412–36.

  38. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.

    Article  CAS  PubMed  Google Scholar 

  39. Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun. 2019;10:1776.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13:e1007081.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu C, Wu L, Wang J, Lin L, Li Y, Lu Q, et al. Systematic identification of risk factors and drug repurposing options for Alzheimer’s disease. Alzheimer’s Dement. 2021;7:e12148.

    Article  Google Scholar 

  42. Zhu J, Wu C, Wu L. Associations between genetically predicted protein levels and COVID-19 severity. J Infect Dis. 2021;223:19–22.

    Article  CAS  PubMed  Google Scholar 

  43. Ghoneim DH, Zhu J, Zheng W, Long J, Murff HJ, Ye F, et al. Mendelian randomization analysis of n-6 polyunsaturated fatty acid levels and pancreatic cancer risk. Cancer Epidemiol Biomarkers Prev. 2020;29:2735–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lawlor DA. Commentary: Two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol. 2016;45:908–15.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Qin Y, Havulinna AS, Liu Y, Jousilahti P, Ritchie SC, Tokolyi A, et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet. 2022;54:134–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yin X, Chan LS, Bose D, Jackson AU, VandeHaar P, Locke AE, et al. Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nat Commun. 2022;13:1644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jaladanki SK, Elmas A, Malave GS, Huang K. Genetic dependency of Alzheimer’s disease-associated genes across cells and tissue types. Sci Rep. 2021;11:12107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Potjewyd FM, Annor-Gyamfi JK, Aubé J, Chu S, Conlon IL, Frankowski KJ, et al. Use of AD Informer Set compounds to explore validity of novel targets in Alzheimer’s disease pathology. Alzheimer’s Dement. 2022;8:e12253.

    Article  Google Scholar 

  50. Esteban-Martos A, Brokate-Llanos AM, Real LM, Melgar-Locatelli S, de Rojas I, Castro-Zavala A, et al. A functional pipeline of genome-wide association data leads to midostaurin as a repurposed drug for Alzheimer’s disease. Int J Mol Sci. 2023;24:12079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Proitsi P, Lee SH, Lunnon K, Keohane A, Powell J, Troakes C, et al. Alzheimer’s disease susceptibility variants in the MS4A6A gene are associated with altered levels of MS4A6A expression in blood. Neurobiol Aging. 2014;35:279–90.

    Article  CAS  PubMed  Google Scholar 

  52. He Z, Le Guen Y, Liu L, Lee J, Ma S, Yang AC, et al. Genome-wide analysis of common and rare variants via multiple knockoffs at biobank scale, with an application to Alzheimer disease genetics. Am J Hum Genet. 2021;108:2336–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mahajan UV, Varma VR, Griswold ME, Blackshear CT, An Y, Oommen AM, et al. Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: a targeted metabolomic and transcriptomic study. PLoS Med. 2020;17:e1003012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun L, Guo D, Jia Y, Shi M, Yang P, Wang Y, et al. Association between human blood metabolome and the risk of Alzheimer’s disease. Ann Neurol. 2022;92:756–67.

    Article  CAS  PubMed  Google Scholar 

  55. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–8.

    Article  CAS  PubMed  Google Scholar 

  56. Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry. 2021;26:5481–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu X, Zhang J, Liu H, Mian Y, Liang B, Xie H, et al. Organic anion transporter 1 deficiency accelerates learning and memory impairment in tg2576 mice by damaging dendritic spine morphology and activity. J Mol Neurosci. 2015;56:730–8.

    Article  CAS  PubMed  Google Scholar 

  58. Bush KT, Wu W, Lun C, Nigam SK. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut–liver– kidney axis. J Biol Chem. 2017;292:15789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krege JH, John SWM, Langenbach LL, Hodgin JB, Hagaman JR, Bachman ES, et al. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature. 1995;375:146–8.

    Article  CAS  PubMed  Google Scholar 

  60. de Vries PS, Yu B, Feofanova EV, Metcalf GA, Brown MR, Zeighami AL, et al. Whole-genome sequencing study of serum peptide levels: the Atherosclerosis Risk in Communities study. Hum Mol Genet. 2017;26:3442–50.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Altmaier E, Menni C, Heier M, Meisinger C, Thorand B, Quell J, et al. The pharmacogenetic footprint of ACE inhibition: a population-based metabolomics study. PLoS ONE. 2016;11:e0153163–e0153163.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Feldstein CA. Association between chronic blood pressure changes and development of Alzheimer’s disease. J Alzheimer’s Dis. 2012;32:753–63.

    Article  Google Scholar 

  63. Koronyo-Hamaoui M, Shah K, Koronyo Y, Bernstein E, Giani JF, Janjulia T, et al. ACE overexpression in myelomonocytic cells: Effect on a mouse model of Alzheimer’s disease. Curr Hypertens Rep. 2014;16:1–9.

    Article  CAS  Google Scholar 

  64. Gregson J, Qizilbash N, Iwagami M, Douglas I, Johnson M, Pearce N, et al. Blood pressure and risk of dementia and its subtypes: a historical cohort study with long-term follow-up in 2.6 million people. Eur J Neurol. 2019;26:1479–86.

    Article  CAS  PubMed  Google Scholar 

  65. Kim S, Kim MJ, Kim S, Kang HS, Lim SW, Myung W, et al. Gender differences in risk factors for transition from mild cognitive impairment to Alzheimer’s disease: A CREDOS study. Compr Psychiatry. 2015;62:114–22.

    Article  PubMed  Google Scholar 

  66. Podcasy JL, Epperson CN. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci. 2022;18:437–46.

  67. Rahman A, Jackson H, Hristov H, Isaacson RS, Saif N, Shetty T, et al. Sex and gender driven modifiers of Alzheimer’s: the role for estrogenic control across age, race, medical, and lifestyle risks. Front Aging Neurosci. 2019;11:315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. LaPlume AA, McKetton L, Anderson ND, Troyer AK. Sex differences and modifiable dementia risk factors synergistically influence memory over the adult lifespan. Alzheimer’s Dement. 2022;14:e12301.

    Google Scholar 

  69. Seshadri S, Wolf PA, Beiser A, Au R, McNulty K, White R, et al. Lifetime risk of dementia and Alzheimer’s disease: the impact of mortality on risk estimates in the Framingham Study. Neurology. 1997;49:1498–504.

    Article  CAS  PubMed  Google Scholar 

  70. Aldred S, Mecocci P. Decreased dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) concentrations in plasma of Alzheimer’s disease (AD) patients. Arch Gerontol Geriatr. 2010;51:e16–e18.

    Article  CAS  PubMed  Google Scholar 

  71. Scassellati C, Galoforo AC, Esposito C, Ciani M, Ricevuti G, Bonvicini C. Promising intervention approaches to potentially resolve neuroinflammation and steroid hormones alterations in Alzheimer’s disease and its neuropsychiatric symptoms. Aging Dis. 2021;12:1337–57.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vaňková M, Hill M, Velíková M, Včelák J, Vacínová G, Dvořáková K, et al. Preliminary evidence of altered steroidogenesis in women with Alzheimer’s disease: have the patients “OLDER” adrenal zona reticularis? J Steroid Biochem Mol Biol. 2016;158:157–77.

    Article  PubMed  Google Scholar 

  73. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20:148–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dong Y, Brewer GJ. Global metabolic shifts in age and Alzheimer’s disease mouse brains pivot at NAD+/NADH redox sites. J Alzheimer’s Dis. 2019;71:119–40.

    Article  CAS  Google Scholar 

  75. Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omic triology NIH Public access. Nat Rev Mol Cell Biol. 2012;13:263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu J, Lahousse L, Nivard MG, Bot M, Chen L, van Klinken JB, et al. Integration of epidemiologic, pharmacologic, genetic and gut microbiome data in a drug–metabolite atlas. Nat Med. 2020;26:110–7.

    Article  CAS  PubMed  Google Scholar 

  77. Chen J, Herrup K. Glutamine as a potential neuroprotectant in Alzheimer’s disease. In: Diet and nutrition in dementia and cognitive decline. Elsevier; 2015. p. 761–71.

  78. Ishizaki F, Nishiyama T, Kawasaki T, Miyashiro Y, Hara N, Takizawa I, et al. Androgen deprivation promotes intratumoral synthesis of dihydrotestosterone from androgen metabolites in prostate cancer. Sci Rep. 2013;3:1528.

    Article  PubMed  PubMed Central  Google Scholar 

  79. El Kihel L. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA) – recent reports. Steroids. 2012;77:10–26.

    Article  CAS  PubMed  Google Scholar 

  80. Ando T, Nishiyama T, Takizawa I, Ishizaki F, Miyashiro Y, Takeda K, et al. Dihydrotestosterone synthesis pathways from inactive androgen 5α-androstane-3β,17β-diol in prostate cancer cells: Inhibition of intratumoural 3β-hydroxysteroid dehydrogenase activities by abiraterone. Sci Rep. 2016;6:32198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is supported by the V Foundation V Scholar Award and University of Hawaii Cancer Center. Lang Wu is also supported by NCI R00CA218892 and NHGRI/NIMHD U54 HG013243. Jingjing Zhu was supported by NCI T32 Postdoctoral Fellowship (T32 CA229110: Multidisciplinary Training in Ethnic Diversity and Cancer Disparities). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd, the National Institute for Health and Care Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London. We would like to thank Drs. Dalia Ghoneim and Jihwan Ha for their help for this study.

Author information

Authors and Affiliations

Authors

Contributions

LW designed the study. SL and HZ performed the data analyses. SL, HZ, and JZ were involved in the interpretation of the data. LW supervised the work. SL drafted the manuscript. All authors substantively revised the manuscript and approved the submitted version of the manuscript.

Corresponding author

Correspondence to Lang Wu.

Ethics declarations

Competing interests

LW has provided consulting service to Pupil Bio Inc. and received honorarium. No potential conflicts of interest were disclosed by the other authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhong, H., Zhu, J. et al. Identification of blood metabolites associated with risk of Alzheimer’s disease by integrating genomics and metabolomics data. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-023-02400-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02400-9

Search

Quick links