Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Targeting metaplasticity mechanisms to promote sustained antidepressant actions

Abstract

The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Translatable metaplasticity concepts.
Fig. 2: Molecular mechanisms of NMDAR activation-dependent LTP.
Fig. 3: Strategies for targeting metaplastic mechanisms.

Similar content being viewed by others

References

  1. WHO. Mental disorders. World Health Organization; 2022, p. 1–2. https://www.who.int/news-room/fact-sheets/detail/mental-disorders.

  2. Greenberg PE, Fournier A-A, Sisitsky T, Simes M, Berman R, Koenigsberg SH, et al. The economic burden of adults with major depressive disorder in the United States (2010 and 2018). Pharmacoeconomics. 2021;39:653–65.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Riggs LM, Gould TD. Ketamine and the future of rapid-acting antidepressants. Annu Rev Clin Psychol. 2021;17:207–31.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry. 1997;54:597–606.

    Article  CAS  PubMed  Google Scholar 

  5. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. Am J Psychiatry. 2006;163:1905–17.

    Article  PubMed  Google Scholar 

  6. Gaynes BN, Lux L, Gartlehner G, Asher G, Forman‐Hoffman V, Green J, et al. Defining treatment‐resistant depression. Depress Anxiety. 2020;37:134–45.

    Article  PubMed  Google Scholar 

  7. Trevino K, McClintock SM, Fischer NM, Vora A, Husain MM. Defining treatment-resistant depression: a comprehensive review of the literature. Ann Clin Psychiatry. 2014;26:222–32.

    PubMed  Google Scholar 

  8. Lewis G, Marston L, Duffy L, Freemantle N, Gilbody S, Hunter R, et al. Maintenance or discontinuation of antidepressants in primary care. N. Engl J Med. 2021;385:1257–67.

    Article  CAS  PubMed  Google Scholar 

  9. Demyttenaere K, Enzlin P, Dewé W, Boulanger B, De Bie J, De, et al. Compliance with antidepressants in a primary care setting, 1: beyond lack of efficacy and adverse events. J Clin Psychiatry. 2001;62:30–33.

    CAS  PubMed  Google Scholar 

  10. Gould TD, Zarate CA Jr, Thompson SM. Molecular pharmacology and neurobiology of rapid-acting antidepressants. Annu Rev Pharm Toxicol. 2019;59:213.

    Article  CAS  Google Scholar 

  11. Thompson SM. Plasticity of synapses and reward circuit function in the genesis and treatment of depression. Neuropsychopharmacology. 2022;14:90–103.

    Google Scholar 

  12. Niciu MJ, Ionescu DF, Richards EM, Zarate CA. Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder. J Neural Transm. 2014;121:907–24.

    Article  CAS  PubMed  Google Scholar 

  13. Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    Article  CAS  PubMed  Google Scholar 

  14. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    Article  CAS  PubMed  Google Scholar 

  15. Fava M, Freeman MP, Flynn M, Judge H, Hoeppner BB, Cusin C, et al. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol Psychiatry. 2020;25:1592–603.

    Article  CAS  PubMed  Google Scholar 

  16. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013;74:250–6.

    Article  CAS  PubMed  Google Scholar 

  17. Abdallah CG, Sanacora G, Duman RS, Krystal JH. The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? Pharm Ther. 2018;190:148–58.

    Article  CAS  Google Scholar 

  18. Daly EJ, Singh JB, Fedgchin M, Cooper K, Lim P, Shelton RC, et al. Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2018;75:139–48.

    Article  PubMed  Google Scholar 

  19. Cristea IA, Naudet F. US Food and Drug Administration approval of esketamine and brexanolone. Lancet Psychiatry. 2019;6:975–7.

    Article  PubMed  Google Scholar 

  20. Shiroma PR, Thuras P, Wels J, Albott CS, Erbes C, Tye S, et al. A randomized, double-blind, active placebo-controlled study of efficacy, safety, and durability of repeated vs single subanesthetic ketamine for treatment-resistant depression. Transl Psychiatry. 2020;10:206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kryst J, Kawalec P, Mitoraj AM, Pilc A, Lasoń W, Brzostek T. Efficacy of single and repeated administration of ketamine in unipolar and bipolar depression: a meta-analysis of randomized clinical trials. Pharm Rep. 2020;72:543–62.

    Article  CAS  Google Scholar 

  22. Aan Het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry. 2010;67:139–45.

    Article  CAS  PubMed  Google Scholar 

  23. Zarate CA Jr, Singh JB, Quiroz JA, De Jesus G, Denicoff KK, Luckenbaugh DA, et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry. 2006;163:153–5.

    Article  PubMed  Google Scholar 

  24. Lee S-Y, Chen S-L, Chang Y-H, Chen PS, Huang S-Y, Tzeng N-S, et al. Add-on memantine to valproate treatment increased HDL-C in bipolar II disorder. J Psychiatr Res. 2013;47:1343–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Smith EG, Deligiannidis KM, Ulbricht CM, Landolin CS, Patel JK, Rothschild AJ. Antidepressant augmentation using the N-methyl-D-aspartate antagonist memantine: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry. 2013;74:867.

    Article  Google Scholar 

  26. Omranifard V, Shirzadi E, Samandari S, Afshar H, Maracy MR. Memantine add on to citalopram in elderly patients with depression: a double-blind placebo-controlled study. J Res Med Sci. 2014;19:525.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ibrahim L, DiazGranados N, Jolkovsky L, Brutsche N, Luckenbaugh DA, Herring WJ, et al. A randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J Clin Psychopharmacol. 2012;32:551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol. 2008;28:631–7.

    Article  CAS  PubMed  Google Scholar 

  29. Paterson B, Fraser H, Wang C, Marcus R. A randomized, double-blind, placebo-controlled, sequential parallel study of CERC-301 in the adjunctive treatment of subjects with severe depression and recent active suicidal ideation despite antidepressant treatment. Age. 2015;18:70.

    Google Scholar 

  30. Cerecor. Cerecor reports top-line data from CERC-301 phase 2 study for major depressive disorder. Cerecor, Inc. 2016.

  31. Park LT, Kadriu B, Gould TD, Zanos P, Greenstein D, Evans JW, et al. A randomized trial of the N-methyl-d-aspartate receptor glycine site antagonist prodrug 4-chlorokynurenine in treatment-resistant depression. Int J Neuropsychopharmacol. 2020;23:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zarate CA Jr, Mathews D, Ibrahim L, Chaves JF, Marquardt C, Ukoh I, et al. A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression. Biol Psychiatry. 2013;74:257–64.

    Article  CAS  PubMed  Google Scholar 

  33. Sanacora G, Johnson MR, Khan A, Atkinson SD, Riesenberg RR, Schronen JP, et al. Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: a randomized, placebo-controlled study. Neuropsychopharmacology. 2017;42:844–53.

    Article  CAS  PubMed  Google Scholar 

  34. Sanacora G, Smith M, Pathak S, Su H, Boeijinga P, McCarthy D, et al. Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Mol Psychiatry. 2014;19:978–85.

    Article  CAS  PubMed  Google Scholar 

  35. Correll CU, Solmi M, Cortese S, Fava M, Højlund M, Kraemer HC, et al. The future of psychopharmacology: a critical appraisal of ongoing phase 2/3 trials, and of some current trends aiming to de‐risk trial programmes of novel agents. World Psychiatry. 2023;22:48–74.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharm Rev. 2018;70:621–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199–214.

    Article  CAS  PubMed  Google Scholar 

  38. Liu Y, Lin D, Wu B, Zhou W. Ketamine abuse potential and use disorder. Brain Res Bull. 2016;126:68–73.

    Article  CAS  PubMed  Google Scholar 

  39. Turner EH. Esketamine for treatment-resistant depression: seven concerns about efficacy and FDA approval. Lancet Psychiatry. 2019;6:977–9.

    Article  PubMed  Google Scholar 

  40. Bonaventura J, Lam S, Carlton M, Boehm MA, Gomez JL, Solís O, et al. Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability. Mol Psychiatry. 2021;26:6704–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Serafini G, Pompili M, Innamorati M, Dwivedi Y, Brahmachari G, Girardi P. Pharmacological properties of glutamatergic drugs targeting NMDA receptors and their application in major depression. Curr Pharm Des. 2013;19:1898–922.

    Article  CAS  PubMed  Google Scholar 

  42. Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB, et al. Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry. 2015;172:950–66.

    Article  PubMed  Google Scholar 

  43. Wei Y, Chang L, Hashimoto K. Molecular mechanisms underlying the antidepressant actions of arketamine: beyond the NMDA receptor. Mol Psychiatry. 2022;27:559–73.

    Article  CAS  PubMed  Google Scholar 

  44. Chaki S, Watanabe M. Antidepressants in the post-ketamine era: pharmacological approaches targeting the glutamatergic system. Neuropharmacology. 2022;223:109348.

    Article  PubMed  Google Scholar 

  45. Hess EM, Riggs LM, Michaelides M, Gould TD. Mechanisms of ketamine and its metabolites as antidepressants. Biochem Pharm. 2022;197:114892.

    Article  CAS  PubMed  Google Scholar 

  46. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lumsden EW, Troppoli TA, Myers SJ, Zanos P, Aracava Y, Kehr J, et al. Antidepressant-relevant concentrations of the ketamine metabolite (2 R, 6 R)-hydroxynorketamine do not block NMDA receptor function. Proc Natl Acad Sci USA. 2019;116:5160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Onisiforou A, Georgiou P, Zanos P. Role of group II metabotropic glutamate receptors in ketamine’s antidepressant actions. Pharm Biochem Behav. 2023;223:173531.

    Article  CAS  Google Scholar 

  49. Witkin JM, Lippa A. Potentiation of AMPA receptors for rapid therapeutic gain in psychiatry has reached a new level of excitement. Neuropsychopharmacology. 2024;49:39–340.

  50. Raison CL, Sanacora G, Woolley J, Heinzerling K, Dunlop BW, Brown RT, et al. Single-dose psilocybin treatment for major depressive disorder: a randomized clinical trial. JAMA. 2023;330:843–53.

  51. Hebb DO. The organization of behavior: a neuropsychological theory. John Wiley & Sons: New York, NY; 1949.

  52. Caporale N, Dan Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci. 2008;31:25–46.

    Article  CAS  PubMed  Google Scholar 

  53. Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science. 2006;313:1093–7.

    Article  CAS  PubMed  Google Scholar 

  54. Regehr WG. Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol. 2012;4:a005702.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012;4:a005710.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Abraham WC. Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci. 2008;9:387.

    Article  CAS  PubMed  Google Scholar 

  57. Nicoll RA. A brief history of long-term potentiation. Neuron. 2017;93:281–90.

    Article  CAS  PubMed  Google Scholar 

  58. Bliss TV, Lømo T. Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232:331–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Collingridge GL, Kehl S, McLennan HT. Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. J Physiol. 1983;334:33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31–108.

    Article  CAS  PubMed  Google Scholar 

  61. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14:383–400.

    Article  CAS  PubMed  Google Scholar 

  62. Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984;309:261–3.

    Article  CAS  PubMed  Google Scholar 

  63. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature. 2014;511:348–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3:175–90.

    Article  CAS  PubMed  Google Scholar 

  65. Herring BE, Nicoll RA. Long-term potentiation: from CaMKII to AMPA receptor trafficking. Annu Rev Physiol. 2016;78:351–65.

    Article  CAS  PubMed  Google Scholar 

  66. Derkach V, Barria A, Soderling TR. Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA. 1999;96:3269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science. 1997;276:2042–5.

    Article  CAS  PubMed  Google Scholar 

  68. Mammen AL, Kameyama K, Roche KW, Huganir RL. Phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J Biol Chem. 1997;272:32528–33.

    Article  CAS  PubMed  Google Scholar 

  69. Benke TA, Lüthi A, Isaac JT, Collingridge GL. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature. 1998;393:793–7.

    Article  CAS  PubMed  Google Scholar 

  70. Ehlers MD. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron. 2000;28:511–25.

    Article  CAS  PubMed  Google Scholar 

  71. Boehm J, Kang M-G, Johnson RC, Esteban J, Huganir RL, Malinow R. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron. 2006;51:213–25.

    Article  CAS  PubMed  Google Scholar 

  72. Esteban JA, Shi S-H, Wilson C, Nuriya M, Huganir RL, Malinow R. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci. 2003;6:136–43.

    Article  CAS  PubMed  Google Scholar 

  73. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H. Structural basis of long-term potentiation in single dendritic spines. Nature. 2004;429:761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harvey CD, Yasuda R, Zhong H, Svoboda K. The spread of Ras activity triggered by activation of a single dendritic spine. Science. 2008;321:136–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Abraham WC, Williams JM. LTP maintenance and its protein synthesis-dependence. Neurobiol Learn Mem. 2008;89:260–8.

    Article  CAS  PubMed  Google Scholar 

  76. Vickers CA, Dickson KS, Wyllie DJA. Induction and maintenance of late‐phase long‐term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurones. J Physiol. 2005;568:803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chetkovich DM, Sweatt JD. NMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J Neurochem. 1993;61:1933–42.

    Article  CAS  PubMed  Google Scholar 

  78. Nguyen PV, Kandel ER. Brief theta-burst stimulation induces a transcription-dependent late phase of LTP requiring cAMP in area CA1 of the mouse hippocampus. Learn Mem. 1997;4:230–43.

    Article  CAS  PubMed  Google Scholar 

  79. Sun P, Enslen H, Myung PS, Maurer RA. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 1994;8:2527–39.

    Article  CAS  PubMed  Google Scholar 

  80. Ofir R, Dwarki V, Rashid D, Verma IM. CREB represses transcription of fos promoter: role of phosphorylation. Gene Expr. 1991;1:55–60.

    CAS  PubMed  Google Scholar 

  81. Lee Y-S, Silva AJ. The molecular and cellular biology of enhanced cognition. Nat Rev Neurosci. 2009;10:126–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Toni N, Buchs P-A, Nikonenko I, Bron C, Muller D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature. 1999;402:421–5.

    Article  CAS  PubMed  Google Scholar 

  83. Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 2010;33:121–9.

    Article  CAS  PubMed  Google Scholar 

  84. Panja D, Bramham CR. BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology. 2014;76:664–76.

    Article  CAS  PubMed  Google Scholar 

  85. Collingridge GL, Peineau S, Howland JG, Wang YT. Long-term depression in the CNS. Nat Rev Neurosci. 2010;11:459–73.

    Article  CAS  PubMed  Google Scholar 

  86. Lisman J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA. 1989;86:9574–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Carroll RC, Beattie EC, Von Zastrow M, Malenka RC. Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci. 2001;2:315–24.

    Article  CAS  PubMed  Google Scholar 

  88. Mulkey RM, Endo S, Shenolikar S, Malenka RC. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature. 1994;369:486–8.

    Article  CAS  PubMed  Google Scholar 

  89. Lüscher C, Xia H, Beattie EC, Carroll RC, von Zastrow M, Malenka RC, et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron. 1999;24:649–58.

    Article  PubMed  Google Scholar 

  90. Nägerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron. 2004;44:759–67.

    Article  PubMed  Google Scholar 

  91. Zhou Q, Homma KJ, Poo M-m. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron. 2004;44:749–57.

    Article  CAS  PubMed  Google Scholar 

  92. Huang Y-Y, Colino A, Selig DK, Malenka RC. The influence of prior synaptic activity on the induction of long-term potentiation. Science. 1992;255:730–3.

    Article  CAS  PubMed  Google Scholar 

  93. Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996;19:126–30.

    Article  CAS  PubMed  Google Scholar 

  94. Cooper LN, Bear MF. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat Rev Neurosci. 2012;13:798–810.

    Article  CAS  PubMed  Google Scholar 

  95. He H-Y, Ray B, Dennis K, Quinlan EM. Experience-dependent recovery of vision following chronic deprivation amblyopia. Nat Neurosci. 2007;10:1134–6.

    Article  CAS  PubMed  Google Scholar 

  96. Abraham WC, Mason-Parker SE, Bear MF, Webb S, Tate WP. Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP. Proc Natl Acad Sci USA. 2001;98:10924–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buschler A, Manahan-Vaughan D. Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo. Front Behav Neurosci. 2012;6:85.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Keralapurath MM, Clark JK, Hammond S, Wagner JJ. Cocaine‐or stress‐induced metaplasticity of LTP in the dorsal and ventral hippocampus. Hippocampus. 2014;24:577–90.

    Article  CAS  PubMed  Google Scholar 

  99. Zelcer I, Cohen H, Richter-Levin G, Lebiosn T, Grossberger T, Barkai E. A cellular correlate of learning-induced metaplasticity in the hippocampus. Cereb Cortex. 2006;16:460–8.

    Article  PubMed  Google Scholar 

  100. Shen H, Moussawi K, Zhou W, Toda S, Kalivas PW. Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proc Natl Acad Sci USA. 2011;108:19407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maggio N, Segal M. Persistent changes in ability to express long-term potentiation/depression in the rat hippocampus after juvenile/adult stress. Biol Psychiatry. 2011;69:748–53.

    Article  PubMed  Google Scholar 

  102. Satoshi F, Yoichiro K, Masami M, Hidekazu F, Hiroshi S, Kenya K, et al. The long-term suppressive effect of prior activation of synaptic inputs by low-frequency stimulation on induction of long-term potentiation in CA1 neurons of guinea pig hippocampal slices. Exp Brain Res. 1996;111:305–12.

    Article  Google Scholar 

  103. Abraham WC, Huggett A. Induction and reversal of long‐term potentiation by repeated high‐frequency stimulation in rat hippocampal slices. Hippocampus. 1997;7:137–45.

    Article  CAS  PubMed  Google Scholar 

  104. Hulme SR, Jones OD, Abraham WC. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci. 2013;36:353–62.

    Article  CAS  PubMed  Google Scholar 

  105. Holland LL, Wagner JJ. Primed facilitation of homosynaptic long-term depression and depotentiation in rat hippocampus. J Neurosci. 1998;18:887–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nasarudeen R, Singh A, Rana ZS, Punnakkal P. Epileptiform activity induced metaplasticity impairs bidirectional plasticity in the hippocampal CA1 synapses via GluN2B NMDA receptors. Exp Brain Res. 2022;240:1–11.

    Article  Google Scholar 

  107. Fava M, Kendler KS. Major depressive disorder. Neuron. 2000;28:335–41.

    Article  CAS  PubMed  Google Scholar 

  108. Krishnan V, Nestler EJ. Animal models of depression: molecular perspectives. Curr Top Behav Neurosci. 2011;7:121–47.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Segal M, Richter‐Levin G, Maggio N. Stress‐induced dynamic routing of hippocampal connectivity: a hypothesis. Hippocampus. 2010;20:1332–8.

    Article  PubMed  Google Scholar 

  110. Maggio N, Segal M. Striking variations in corticosteroid modulation of long-term potentiation along the septotemporal axis of the hippocampus. J Neurosci. 2007;27:5757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci. 2011;31:6627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rönicke R, Mikhaylova M, Rönicke S, Meinhardt J, Schröder UH, Fändrich M, et al. Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors. Neurobiol Aging. 2011;32:2219–28.

    Article  PubMed  Google Scholar 

  113. Preston CJ, Brown KA, Wagner JJ. Cocaine conditioning induces persisting changes in ventral hippocampus synaptic transmission, long-term potentiation, and radial arm maze performance in the mouse. Neuropharmacology. 2019;150:27–37.

    Article  CAS  PubMed  Google Scholar 

  114. Chiamulera C, Piva A, Abraham WC. Glutamate receptors and metaplasticity in addiction. Curr Opin Pharm. 2021;56:39–45.

    Article  CAS  Google Scholar 

  115. Castrén E. Neuronal network plasticity and recovery from depression. JAMA Psychiatry. 2013;70:983–9.

    Article  PubMed  Google Scholar 

  116. Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology. 2012;62:63–77.

    Article  CAS  PubMed  Google Scholar 

  117. Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X. An excitatory synapse hypothesis of depression. Trends Neurosci. 2015;38:279–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Domino EF, Chodoff P, Corssen G. Pharmacologic effects of CI‐581, a new dissociative anesthetic, in man. Clin Pharm Ther. 1965;6:279–91.

    Article  CAS  Google Scholar 

  119. Domino EF, Warner DS. Taming the ketamine tiger. Anesthesiology. 2010;113:678–84.

    Article  PubMed  Google Scholar 

  120. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–52.

    Article  CAS  PubMed  Google Scholar 

  121. Zanos P, Gould T. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dravid SM, Erreger K, Yuan H, Nicholson K, Le P, Lyuboslavsky P, et al. Subunit‐specific mechanisms and proton sensitivity of NMDA receptor channel block. J Physiol. 2007;581:107–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kotermanski SE, Johnson JW. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J Neurosci. 2009;29:2774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yamakura T, Mori H, Masaki H, Shimoji K, Mishina M. Different sensitivities of NMDA receptor channel subtypes to non-competitive antagonists. Neuroreport. 1993;4:687–90.

    Article  CAS  PubMed  Google Scholar 

  125. Quinlan EM, Olstein DH, Bear MF. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc Natl Acad Sci USA. 1999;96:12876–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Quinlan EM, Philpot BD, Huganir RL, Bear MF. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci. 1999;2:352–7.

    Article  CAS  PubMed  Google Scholar 

  127. Frenkel MY, Bear MF. How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron. 2004;44:917–23.

    Article  CAS  PubMed  Google Scholar 

  128. Chen WS, Bear MF. Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex. Neuropharmacology. 2007;52:200–14.

    Article  CAS  PubMed  Google Scholar 

  129. Cho KK, Bear MF. Promoting neurological recovery of function via metaplasticity. Future Neurol. 2010;5:21–26.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Philpot BD, Cho KK, Bear MF. Obligatory role of NR2A for metaplasticity in visual cortex. Neuron. 2007;53:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Piva A, Caffino L, Mottarlini F, Pintori N, Castillo Díaz F, Fumagalli F, et al. Metaplastic effects of ketamine and MK-801 on glutamate receptors expression in rat medial prefrontal cortex and hippocampus. Mol Neurobiol. 2021;58:3443–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gerhard DM, Pothula S, Liu R-J, Wu M, Li X-Y, Girgenti MJ, et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J Clin Investig. 2020;130:1336–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pothula S, Kato T, Liu R-J, Wu M, Gerhard D, Shinohara R, et al. Cell-type specific modulation of NMDA receptors triggers antidepressant actions. Mol Psychiatry. 2021;26:5097–111.

    Article  CAS  PubMed  Google Scholar 

  134. Qin Y, Guo X, Song W, Liang Z, Wang Y, Feng D, et al. Antidepressant-like effect of CP-101,606: Evidence of mTOR pathway activation. Mol Cell Neurosci. 2023;124:103821.

    Article  CAS  PubMed  Google Scholar 

  135. Graef JD, Newberry K, Newton A, Pieschl R, Shields E, Luan F-n, et al. Effect of acute NR2B antagonist treatment on long-term potentiation in the rat hippocampus. Brain Res. 2015;1609:31–39.

    Article  CAS  PubMed  Google Scholar 

  136. Rocha B, Ward A, Egilmez Y, Lytle D, Emmett-Oglesby M. Tolerance to the discriminative stimulus and reinforcing effects of ketamine. Behav Pharm. 1996;7:160–8.

    Article  CAS  Google Scholar 

  137. Yang C, Shirayama Y, Zhang J, Ren Q, Yao W, Ma M, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:e632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang J-C, Li S-X, Hashimoto K. R (−)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharm Biochem Behav. 2014;116:137–41.

    Article  CAS  Google Scholar 

  139. Zanos P, Brown KA, Georgiou P, Yuan P, Zarate CA, Thompson SM, et al. NMDA receptor activation-dependent antidepressant-relevant behavioral and synaptic actions of ketamine. J Neurosci. 2023;43:1038–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kim J-W, Monteggia LM. Increasing doses of ketamine curtail antidepressant responses and suppress associated synaptic signaling pathways. Behav Brain Res. 2020;380:112378.

    Article  CAS  PubMed  Google Scholar 

  141. Izumi Y, Zorumski CF. Metaplastic effects of subanesthetic ketamine on CA1 hippocampal function. Neuropharmacology. 2014;86:273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Izumi Y, Hsu FF, Conway CR, Nagele P, Mennerick SJ, Zorumski CF. Nitrous oxide, a rapid antidepressant, has ketamine-like effects on excitatory transmission in the adult hippocampus. Biol Psychiatry. 2022;92:964–72.

  143. Ballard ED, Zarate CA Jr. The role of dissociation in ketamine’s antidepressant effects. Nat Commun. 2020;11:6431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Burgdorf J, Zhang X-l, Nicholson KL, Balster RL, David Leander J, Stanton PK, et al. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology. 2013;38:729–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Widman AJ, Stewart AE, Erb EM, Gardner E, McMahon LL. Intravascular ketamine increases theta-burst but not high frequency tetanus induced LTP at CA3-CA1 synapses within three hours and devoid of an increase in spine density. Front Synaptic Neurosci. 2018;10:8.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Yang Y, Ju W, Zhang H, Sun L. Effect of ketamine on LTP and NMDAR EPSC in hippocampus of the chronic social defeat stress mice model of depression. Front Behav Neurosci. 2018;12:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Aleksandrova LR, Wang YT, Phillips AG. Ketamine and its metabolite,(2R, 6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain. 2020;13:1–16.

    Article  Google Scholar 

  148. Belujon P, Grace AA. Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry. 2014;76:927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Aleksandrova LR, Wang YT, Phillips AG. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neurosci Biobehav Rev. 2019;105:1–23.

    Article  CAS  PubMed  Google Scholar 

  150. Zhu X, Zhang F, You Y, Wang H, Yuan S, Wu B, et al. S-ketamine exerts antidepressant effects by regulating Rac1 GTPase mediated synaptic plasticity in the hippocampus of stressed rats. Cell Mol Neurobiol. 2023;43:299–314.

    Article  CAS  PubMed  Google Scholar 

  151. Pałucha-Poniewiera A, Bobula B, Rafało-Ulińska A. The antidepressant-like activity and cognitive enhancing effects of the combined administration of (R)-Ketamine and LY341495 in the CUMS model of depression in mice are related to the modulation of excitatory synaptic transmission and LTP in the PFC. Pharmaceuticals. 2023;16:288.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Yao N, Skiteva O, Zhang X, Svenningsson P, Chergui K. Ketamine and its metabolite (2R, 6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit. Mol Psychiatry. 2018;23:2066–77.

    Article  CAS  PubMed  Google Scholar 

  153. Skiteva O, Yao N, Chergui K. Ketamine induces opposite changes in AMPA receptor calcium permeability in the ventral tegmental area and nucleus accumbens. Transl Psychiatry. 2021;11:530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zorumski CF, Izumi Y. NMDA receptors and metaplasticity: mechanisms and possible roles in neuropsychiatric disorders. Neurosci Biobehav Rev. 2012;36:989–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang C-C, Wei I-H, Huang C-L, Chen K-T, Tsai M-H, Tsai P, et al. Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biol Psychiatry. 2013;74:734–41.

    Article  CAS  PubMed  Google Scholar 

  156. Khan MA, Houck DR, Gross AL, Zhang X-l, Cearley C, Madsen TM, et al. NYX-2925 is a novel NMDA receptor-specific spirocyclic-β-lactam that modulates synaptic plasticity processes associated with learning and memory. Int J Neuropsychopharmacol. 2018;21:242–54.

    Article  CAS  PubMed  Google Scholar 

  157. Burgdorf JS, Christian E, Sørensen L, Stanton PK, Leaderbrand K, Madsen T, et al. A translational EEG-based approach to assess modulation of long-lasting NMDAR-dependent synaptic plasticity. Psychopharmacology. 2019;236:3687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Donello JE, Banerjee P, Li Y-X, Guo Y-X, Yoshitake T, Zhang X-L, et al. Positive N-methyl-D-aspartate receptor modulation by rapastinel promotes rapid and sustained antidepressant-like effects. Int J Neuropsychopharmacol. 2019;22:247–59.

    Article  CAS  PubMed  Google Scholar 

  159. Moskal JR, Burch R, Burgdorf JS, Kroes RA, Stanton PK, Disterhoft JF, et al. GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists. Expert Opin Investig Drugs. 2014;23:243–54.

    Article  CAS  PubMed  Google Scholar 

  160. Pothula S, Liu R-J, Wu M, Sliby A-N, Picciotto MR, Banerjee P, et al. Positive modulation of NMDA receptors by AGN-241751 exerts rapid antidepressant-like effects via excitatory neurons. Neuropsychopharmacology. 2021;46:799–808.

    Article  CAS  PubMed  Google Scholar 

  161. Shen M, Lv D, Liu X, Wang C. ERK/mTOR signaling may underlying the antidepressant actions of rapastinel in mice. Transl Psychiatry. 2022;12:522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Burgdorf J, Zhang X-L, Weiss C, Gross A, Boikess SR, Kroes RA, et al. The long-lasting antidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortex and hippocampus. Neuroscience. 2015;308:202–11.

    Article  CAS  PubMed  Google Scholar 

  163. Zhang X-l, Sullivan JA, Moskal JR, Stanton PK. A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral–CA1 synapses in hippocampus. Neuropharmacology. 2008;55:1238–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Preskorn S, Macaluso M, ZAMMIT G, MOSKAL JR, BURCH RM, Group G-CS. Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract. 2015;21:140–9.

    Article  PubMed  Google Scholar 

  165. Kato T, Duman RS. Rapastinel, a novel glutamatergic agent with ketamine-like antidepressant actions: convergent mechanisms. Pharm Biochem Behav. 2020;188:172827.

    Article  CAS  Google Scholar 

  166. Burgdorf JS, Zhang X-L, Stanton PK, Moskal JR, Donello JE. Zelquistinel is an orally bioavailable novel NMDA receptor allosteric modulator that exhibits rapid and sustained antidepressant-like effects. Int J Neuropsychopharmacol. 2022;25:979–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xu Y, Yu Z, Chen S, Li Z, Long X, Chen M, et al. (2R, 6R)-hydroxynorketamine targeting the basolateral amygdala regulates fear memory. Neuropharmacology. 2023;225:109402.

    Article  CAS  PubMed  Google Scholar 

  169. Morris PJ, Moaddel R, Zanos P, Moore CE, Gould T, Zarate CA Jr, et al. Synthesis and N-methyl-d-aspartate (NMDA) receptor activity of ketamine metabolites. Org Lett. 2017;19:4572–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Riggs LM, Aracava Y, Zanos P, Fischell J, Albuquerque EX, Pereira EF. et al.(2R, 6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism. Neuropsychopharmacology. 2020;45:426–36.

    Article  CAS  PubMed  Google Scholar 

  171. Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, et al. Sub-anesthetic concentrations of (R, S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharm. 2013;698:228–34.

    Article  CAS  Google Scholar 

  172. Suzuki K, Nosyreva E, Hunt KW, Kavalali ET, Monteggia LM. Effects of a ketamine metabolite on synaptic NMDAR function. Nature. 2017;546:E1–3.

    Article  CAS  PubMed  Google Scholar 

  173. Pham TH, Defaix C, Xu X, Deng S-X, Fabresse N, Alvarez J-C, et al. Common neurotransmission recruited in (R, S)-ketamine and (2R, 6R)-hydroxynorketamine–induced sustained antidepressant-like effects. Biol Psychiatry. 2018;84:e3–6.

    Article  CAS  PubMed  Google Scholar 

  174. Chou D, Peng H-Y, Lin T-B, Lai C-Y, Hsieh M-C, Wen Y-C. et al.(2R, 6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray. Neuropharmacology. 2018;139:1–12.

    Article  CAS  PubMed  Google Scholar 

  175. Ye L, Ko C-Y, Huang Y, Zheng C, Zheng Y, Chou D. Ketamine metabolite (2R, 6R)-hydroxynorketamine enhances aggression via periaqueductal gray glutamatergic transmission. Neuropharmacology. 2019;157:107667.

    Article  CAS  PubMed  Google Scholar 

  176. Riggs LM, Thompson SM, Gould TD. (2R, 6R)-hydroxynorketamine rapidly potentiates optically-evoked Schaffer collateral synaptic activity. Neuropharmacology. 2022;214:109153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Fukumoto K, Fogaça MV, Liu R-J, Duman C, Kato T, Li X-Y, et al. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2 R, 6 R)-hydroxynorketamine. Proc Natl Acad Sci USA. 2019;116:297–302.

    Article  CAS  PubMed  Google Scholar 

  178. Chaki S, Yoshikawa R, Hirota S, Shimazaki T, Maeda M, Kawashima N, et al. MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. Neuropharmacology. 2004;46:457–67.

    Article  CAS  PubMed  Google Scholar 

  179. Dwyer JM, Lepack AE, Duman RS. mTOR activation is required for the antidepressant effects of mGluR2/3 blockade. Int J Neuropsychopharmacol. 2012;15:429–34.

    Article  CAS  PubMed  Google Scholar 

  180. Zanos P, Highland JN, Stewart BW, Georgiou P, Jenne CE, Lovett J, et al. (2R, 6R)-hydroxynorketamine exerts mGlu2 receptor-dependent antidepressant actions. Proc Natl Acad Sci USA. 2019;116:6441–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Witkin J, Mitchell S, Wafford K, Carter G, Gilmour G, Li J, et al. Comparative effects of LY3020371, a potent and selective metabotropic glutamate (mGlu) 2/3 receptor antagonist, and ketamine, a noncompetitive N-methyl-d-aspartate receptor antagonist in rodents: evidence supporting the use of mGlu2/3 antagonists, for the treatment of depression. J Pharm Exp Ther. 2017;361:68–86.

    Article  CAS  Google Scholar 

  182. Chin C-L, Upadhyay J, Marek GJ, Baker SJ, Zhang M, Mezler M, et al. Awake rat pharmacological magnetic resonance imaging as a translational pharmacodynamic biomarker: metabotropic glutamate 2/3 agonist modulation of ketamine-induced blood oxygenation level dependence signals. J Pharm Exp Ther. 2011;336:709–15.

    Article  CAS  Google Scholar 

  183. Wyckhuys T, Langlois X, Schmidt M, Stroobants S, Staelens S. The [18F] FDG μPET readout of a brain activation model to evaluate the metabotropic glutamate receptor 2 positive allosteric modulator JNJ-42153605. J Pharm Exp Ther. 2014;350:375–86.

    Article  Google Scholar 

  184. Lepack AE, Bang E, Lee B, Dwyer JM, Duman RS. Fast-acting antidepressants rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures. Neuropharmacology. 2016;111:242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Karasawa J-i, Shimazaki T, Kawashima N, Chaki S. AMPA receptor stimulation mediates the antidepressant-like effect of a group II metabotropic glutamate receptor antagonist. Brain Res. 2005;1042:92–98.

    Article  CAS  PubMed  Google Scholar 

  186. Koike H, Chaki S. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Behav Brain Res. 2014;271:111–5.

    Article  CAS  PubMed  Google Scholar 

  187. Dong C, Zhang J-c, Yao W, Ren Q, Ma M, Yang C, et al. Rapid and sustained antidepressant action of the mGlu2/3 receptor antagonist MGS0039 in the social defeat stress model: comparison with ketamine. Int J Neuropsychopharmacol. 2017;20:228–36.

    CAS  PubMed  Google Scholar 

  188. Koike H, Fukumoto K, Iijima M, Chaki S. Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression. Behav Brain Res. 2013;238:48–52.

    Article  CAS  PubMed  Google Scholar 

  189. Huang Y-Z, Chen R-S, Rothwell JC, Wen H-Y. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol. 2007;118:1028–32.

    Article  CAS  PubMed  Google Scholar 

  190. Ren L, Hao X, Min S, Deng J, Chen Q, Chen H, et al. Anesthetics alleviate learning and memory impairment induced by electroconvulsive shock by regulation of NMDA receptor-mediated metaplasticity in depressive rats. Neurobiol Learn Mem. 2018;155:65–77.

    Article  CAS  PubMed  Google Scholar 

  191. Reid IC, Stewart CA. Seizures, memory and synaptic plasticity. Seizure. 1997;6:351–9.

    Article  CAS  PubMed  Google Scholar 

  192. Li M, Yao X, Sun L, Zhao L, Xu W, Zhao H, et al. Effects of electroconvulsive therapy on depression and its potential mechanism. Front Psychol. 2020;11:80.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Stewart CA, Reid IC. Ketamine prevents ECS-induced synaptic enhancement in rat hippocampus. Neurosci Lett. 1994;178:11–14.

    Article  CAS  PubMed  Google Scholar 

  194. Chen AC-H, Shin K-H, Duman RS, Sanacora G. ECS-induced mossy fiber sprouting and BDNF expression are attenuated by ketamine pretreatment. J ECT. 2001;17:27–32.

    Article  CAS  PubMed  Google Scholar 

  195. Wilkinson ST, Rhee TG, Joormann J, Webler R, Ortiz Lopez M, Kitay B, et al. Cognitive behavioral therapy to sustain the antidepressant effects of ketamine in treatment-resistant depression: a randomized clinical trial. Psychother Psychosom. 2021;90:318–27.

    Article  PubMed  Google Scholar 

  196. Drozdz SJ, Goel A, McGarr MW, Katz J, Ritvo P, Mattina GF, et al. Ketamine assisted psychotherapy: a systematic narrative review of the literature. J Pain Res. 2022;15:1691–706.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tatti E, Phillips AL, Paciorek R, Romanella SM, Dettore D, Di Lorenzo G, et al. Boosting psychological change: combining non-invasive brain stimulation with psychotherapy. Neurosci Biobehav Rev. 2022;142:104867.

    Article  PubMed  Google Scholar 

  198. Zhang J, Tian H, Li J, Ji S, Chen S, Zhu J, et al. Ketamine plus propofol-electroconvulsive therapy (ECT) transiently improves the antidepressant effects and the associated brain functional alterations in patients with propofol-ECT-resistant depression. Psychiatry Res. 2020;287:112907.

    Article  CAS  PubMed  Google Scholar 

  199. Altinay M, Karne H, Anand A. Administration of sub-anesthetic dose of ketamine and electroconvulsive treatment on alternate week days in patients with treatment resistant depression: a double blind placebo controlled trial. Psychopharmacol Bull. 2019;49:8.

    PubMed  PubMed Central  Google Scholar 

  200. Wrightson JG, Cole J, Sohn MN, McGirr A. The effects of D-Cycloserine on corticospinal excitability after repeated spaced intermittent theta-burst transcranial magnetic stimulation: a randomized controlled trial in healthy individuals. Neuropsychopharmacology. 2023;48:1217–24.

    Article  CAS  PubMed  Google Scholar 

  201. Brown JC, DeVries WH, Korte JE, Sahlem GL, Bonilha L, Short EB, et al. NMDA receptor partial agonist, d-cycloserine, enhances 10 Hz rTMS-induced motor plasticity, suggesting long-term potentiation (LTP) as underlying mechanism. Brain Stimul. 2020;13:530–2.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Cole J, Selby B, Ismail Z, McGirr A. D-cycloserine normalizes long-term motor plasticity after transcranial magnetic intermittent theta-burst stimulation in major depressive disorder. Clin Neurophysiol. 2021;132:1770–6.

    Article  PubMed  Google Scholar 

  203. Cole J, Sohn MN, Harris AD, Bray SL, Patten SB, McGirr A. Efficacy of adjunctive D-cycloserine to intermittent theta-burst stimulation for major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2022;79:1153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Reardon S. Depression researchers rethink mouse swim test. Nature. 2019;571:456–7.

    Article  CAS  PubMed  Google Scholar 

  205. Kim J-W, Autry AE, Na ES, Adachi M, Björkholm C, Kavalali ET, et al. Sustained effects of rapidly acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nat Neurosci. 2021;24:1100–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, et al. Psychedelics reopen the social reward learning critical period. Nature. 2023;618:790–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Nayak S, Johnson MW. Psychedelics and psychotherapy. Pharmacopsychiatry. 2021;54:167–75.

    Article  PubMed  Google Scholar 

  208. Oh MM, Kuo AG, Wu WW, Sametsky EA, Disterhoft JF. Watermaze learning enhances excitability of CA1 pyramidal neurons. J Neurophysiol. 2003;90:2171–9.

    Article  PubMed  Google Scholar 

  209. Moyer JR Jr, Thompson LT, Disterhoft JF. Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. J Neurosci. 1996;16:5536–46.

    Article  CAS  PubMed  Google Scholar 

  210. Scangos KW, State MW, Miller AH, Baker JT, Williams LM. New and emerging approaches to treat psychiatric disorders. Nat Med. 2023;29:1–17.

    Article  Google Scholar 

  211. Zanos P, Nelson ME, Highland JN, Krimmel SR, Georgiou P, Gould TD, et al. A negative allosteric modulator for alpha5 subunit-containing GABA receptors exerts a rapid and persistent antidepressant-like action without the side effects of the NMDA receptor antagonist ketamine in mice. eNeuro, 2017;4:ENEURO.0285-16.2017.

  212. Chaki S, Watanabe M. mGlu2/3 receptor antagonists for depression: overview of underlying mechanisms and clinical development. Eur Arch Psychiatry Clin Neurosci. 2023;273:1–12.

    Article  Google Scholar 

  213. Normann C, Schmitz D, Fürmaier A, Döing C, Bach M. Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry. 2007;62:373–80.

    Article  PubMed  Google Scholar 

  214. Kuhn M, Mainberger F, Feige B, Maier JG, Mall V, Jung NH, et al. State-dependent partial occlusion of cortical LTP-like plasticity in major depression. Neuropsychopharmacology. 2016;41:1521–9.

    Article  CAS  PubMed  Google Scholar 

  215. Noda Y, Zomorrodi R, Vila‐Rodriguez F, Downar J, Farzan F, Cash RF, et al. Impaired neuroplasticity in the prefrontal cortex in depression indexed through paired associative stimulation. Depress Anxiety. 2018;35:448–56.

    Article  CAS  PubMed  Google Scholar 

  216. Player MJ, Taylor JL, Weickert CS, Alonzo A, Sachdev P, Martin D, et al. Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology. 2013;38:2101–8.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Yu C, Li A, Li X, Chen Z, Wang P, Dong Z, et al. Impaired LTD-like motor cortical plasticity in female patients with major depression disorder. Neuropharmacology. 2020;179:108268.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Gustavo Medeiros, John Donello, John Wagner, Fernando Goes, Carlos Zarate, and all members of the Gould laboratory for critical reviews of the manuscript.

Funding

This work was supported by NIH/NIMH R01MH107615 and U.S. Department of Veterans Affairs Merit Awards 1I01BX004062 and 1I01BX006018 to TDG. The contents of this manuscript do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

KAB and TDG contributed to the conception of the work; KAB wrote the manuscript and TDG critically revised the work.

Corresponding author

Correspondence to Todd D. Gould.

Ethics declarations

Competing interests

TDG is listed as an inventor in patents and patent applications related to the pharmacology and use of a ketamine metabolite, (2 R,6 R)-hydroxynorketamine, in the treatment of depression, anxiety, anhedonia, suicidal ideation, and post-traumatic stress disorders. TDG has assigned his patent rights to the University of Maryland, Baltimore, but will share a percentage of any royalties that may be received by the University of Maryland, Baltimore. KAB declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, K.A., Gould, T.D. Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-023-02397-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02397-1

Keywords

Search

Quick links