Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EF1α-associated protein complexes affect dendritic spine plasticity by regulating microglial phagocytosis in Fmr1 knock-out mice

Abstract

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. There is no specific treatment for FXS due to the lack of therapeutic targets. We report here that Elongation Factor 1α (EF1α) forms a complex with two other proteins: Tripartite motif-containing protein 3 (TRIM3) and Murine double minute (Mdm2). Both EF1α-Mdm2 and EF1α-TRIM3 protein complexes are increased in the brain of Fmr1 knockout mice as a result of FMRP deficiency, which releases the normal translational suppression of EF1α mRNA and increases EF1α protein levels. Increased EF1α-Mdm2 complex decreases PSD-95 ubiquitination (Ub-PSD-95) and Ub-PSD-95-C1q interaction. The elevated level of TRIM3-EF1α complex is associated with decreased TRIM3-Complement Component 3 (C3) complex that inhibits the activation of C3. Both protein complexes thereby contribute to a reduction in microglia-mediated phagocytosis and dendritic spine pruning. Finally, we created a peptide that disrupts both protein complexes and restores dendritic spine plasticity and behavioural deficits in Fmr1 knockout mice. The EF1α-Mdm2 and EF1α-TRIM3 complexes could thus be new therapeutic targets for FXS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular characterization of Mdm2-EF1α and TRIM3- EF1α complexes.
Fig. 2: Both Mdm2 and TRIM3 form protein complexes with EF1α via the L77-D91 region of EF1α.
Fig. 3: TAT-EF1α peptide restores dendritic spine density and plasticity, and reverses behavioural deficits in Fmr1 KO mice.
Fig. 4: TAT-EF1α-pep rescued microglial synaptic pruning deficiency in cortex of Fmr1 KO mice at postnatal day 21 and normalizes the amount of Mdm2-PSD95 complex, ubiquitination of PSD95 and PSD95-C1q interaction in Fmr1 KO mice.
Fig. 5: TAT-EF1α peptide facilitates C3 cleavage through regulating the TRIM3-C3 complex in Fmr1 KO mice.
Fig. 6: Schematic model showing the hypothesized pathway by which Mdm2-EF1α and TRIM3-EF1α regulate dendritic spine density and plasticity.

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available from the corresponding author upon request.

References

  1. Hagerman RJ, Polussa J. Treatment of the psychiatric problems associated with fragile X syndrome. Curr Opin Psychiatry. 2015;28:107–12.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang T, Bray SM, Warren ST. New perspectives on the biology of fragile X syndrome. Curr Opin Genet Dev. 2012;22:256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lozano R, Azarang A, Wilaisakditipakorn T, Hagerman RJ. Fragile X syndrome: a review of clinical management. Intractable Rare Dis Res. 2016;5:145–57.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aishworiya R, Valica T, Hagerman R, Restrepo B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics. 2022;19:248–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tranfaglia MR. The psychiatric presentation of fragile x: evolution of the diagnosis and treatment of the psychiatric comorbidities of fragile X syndrome. Dev Neurosci. 2011;33:337–48.

    Article  CAS  PubMed  Google Scholar 

  6. Irwin SA, Galvez R, Greenough WT. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cerebral Cortex. 2000;10:1038–44.

    Article  CAS  PubMed  Google Scholar 

  7. Bagni C, Zukin RS. A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron. 2019;101:1070–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jawaid S, Kidd GJ, Wang J, Swetlik C, Dutta R, Trapp BD. Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome. Glia. 2018;66:789–800.

    Article  PubMed  Google Scholar 

  9. Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry. 2016;17:174–86.

    Article  PubMed  Google Scholar 

  10. Berry KP, Nedivi E. Spine dynamics: are they all the same? Neuron. 2017;96:43–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146:247–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ascano M Jr., Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature. 2012;492:382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sung YJ, Dolzhanskaya N, Nolin SL, Brown T, Currie JR, Denman RB. The fragile X mental retardation protein FMRP binds elongation factor 1A mRNA and negatively regulates its translation in vivo. J Biol Chem. 2003;278:15669–78.

    Article  CAS  PubMed  Google Scholar 

  14. Riis B, Rattan SI, Clark BF, Merrick WC. Eukaryotic protein elongation factors. Trends Biochem Sci. 1990;15:420–4.

    Article  PubMed  Google Scholar 

  15. Negrutskii BS, El’skaya AV. Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog Nucleic Acid Res Mol Biol. 1998;60:47–78.

    Article  CAS  PubMed  Google Scholar 

  16. Huang F, Chotiner JK, Steward O. The mRNA for elongation factor 1alpha is localized in dendrites and translated in response to treatments that induce long-term depression. J Neurosci. 2005;25:7199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamrita B, Nasr HB, Hammann P, Kuhn L, Guillier CL, Chaieb A, et al. An elongation factor-like protein (EF-Tu) elicits a humoral response in infiltrating ductal breast carcinomas: an immunoproteomics investigation. Clin Biochem. 2011;44:1097–104.

    Article  CAS  PubMed  Google Scholar 

  18. Chang JS, Seok H, Kwon TK, Min DS, Ahn BH, Lee YH, et al. Interaction of elongation factor-1alpha and pleckstrin homology domain of phospholipase C-gamma 1 with activating its activity. J Biol Chem. 2002;277:19697–702.

    Article  CAS  PubMed  Google Scholar 

  19. Yang J, Fuller PJ, Morgan J, Shibata H, McDonnell DP, Clyne CD, et al. Use of phage display to identify novel mineralocorticoid receptor-interacting proteins. Mol Endocrinol. 2014;28:1571–84.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vera M, Pani B, Griffiths LA, Muchardt C, Abbott CM, Singer RH, et al. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. Elife. 2014;3:e03164.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Frum R, Busby SA, Ramamoorthy M, Deb S, Shabanowitz J, Hunt DF, et al. HDM2-binding partners: interaction with translation elongation factor EF1alpha. J Proteome Res. 2007;6:1410–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsai NP, Wilkerson JR, Guo W, Huber KM. FMRP-dependent Mdm2 dephosphorylation is required for MEF2-induced synapse elimination. Hum Mol Genet. 2017;26:293–304.

    CAS  PubMed  Google Scholar 

  23. Tsai NP, Wilkerson JR, Guo W, Maksimova MA, DeMartino GN, Cowan CW, et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell. 2012;151:1581–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tocchini C, Ciosk R. TRIM-NHL proteins in development and disease. Semin Cell Dev Biol. 2015;47-48:52–59.

    Article  CAS  PubMed  Google Scholar 

  25. Micale L, Chaignat E, Fusco C, Reymond A, Merla G. The tripartite motif: structure and function. Adv Exp Med Biol. 2012;770:11–25.

    Article  CAS  PubMed  Google Scholar 

  26. El-Husseini AE, Fretier P, Vincent SR. Cloning and characterization of a gene (RNF22) encoding a novel brain expressed ring finger protein (BERP) that maps to human chromosome 11p15.5. Genomics. 2001;71:363–7.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Raheja R, Yeh N, Ciznadija D, Pedraza AM, Ozawa T, et al. TRIM3, a tumor suppressor linked to regulation of p21(Waf1/Cip1.). Oncogene. 2014;33:308–15.

    Article  CAS  PubMed  Google Scholar 

  28. Boulay JL, Stiefel U, Taylor E, Dolder B, Merlo A, Hirth F. Loss of heterozygosity of TRIM3 in malignant gliomas. BMC Cancer. 2009;9:71.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hung AY, Sung CC, Brito IL, Sheng M. Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons. PLoS ONE. 2010;5:e9842.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN, et al. Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res. 2009;43:978–86.

    Article  PubMed  Google Scholar 

  31. Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. The complement system and innate immunity. Immunobiology: the immune system in health and disease, 5th ed. New York: Garland Science; 2001.

  32. Fu H, Liu B, Frost JL, Hong S, Jin M, Ostaszewski B, et al. Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia. 2012;60:993–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ramaglia V, Hughes TR, Donev RM, Ruseva MM, Wu X, Huitinga I, et al. C3-dependent mechanism of microglial priming relevant to multiple sclerosis. Proc Natl Acad Sci USA. 2012;109:965–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zang T, Maksimova MA, Cowan CW, Bassel-Duby R, Olson EN, Huber KM. Postsynaptic FMRP bidirectionally regulates excitatory synapses as a function of developmental age and MEF2 activity. Mol CellNeurosci. 2013;56:39–49.

    CAS  Google Scholar 

  35. Su P, Li S, Chen S, Lipina TV, Wang M, Lai TK, et al. A dopamine D2 receptor-DISC1 protein complex may contribute to antipsychotic-like effects. Neuron. 2014;84:1302–16.

    Article  CAS  PubMed  Google Scholar 

  36. Pei L, Li S, Wang M, Diwan M, Anisman H, Fletcher PJ, et al. Uncoupling the dopamine D1-D2 receptor complex exerts antidepressant-like effects. Nat Med. 2010;16:1393–5.

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Su P, Lai TK, Jiang A, Liu J, Zhai D, et al. The glucocorticoid receptor-FKBP51 complex contributes to fear conditioning and posttraumatic stress disorder. J Clin Investig. 2020;130:877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Yan S, Zhang F, Li J, Li R, Zhang CX. Parkin-dependent and -independent degradation of synaptotagmin-11 in neurons and astrocytes. Neurosci Lett. 2020;739:135402.

    Article  CAS  PubMed  Google Scholar 

  39. Lee FH, Fadel MP, Preston-Maher K, Cordes SP, Clapcote SJ, Price DJ, et al. Disc1 point mutations in mice affect development of the cerebral cortex. J Neurosci. 2011;31:3197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan WB. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc. 2010;5:201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma L, Qiao Q, Tsai JW, Yang G, Li W, Gan WB. Experience-dependent plasticity of dendritic spines of layer 2/3 pyramidal neurons in the mouse cortex. Dev Neurobiol. 2016;76:277–86.

    Article  PubMed  Google Scholar 

  42. Li Y, Stockton ME, Bhuiyan I, Eisinger BE, Gao Y, Miller JL, et al. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome. Sci Transl Med. 2016;8:336ra361.

    Article  Google Scholar 

  43. Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Maldonado R, Ozaita A. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosc. 2009;12:1152–8.

    Article  CAS  Google Scholar 

  44. Contestabile A, Greco B, Ghezzi D, Tucci V, Benfenati F, Gasparini L. Lithium rescues synaptic plasticity and memory in Down syndrome mice. J Clin Investig. 2013;123:348–61.

    Article  CAS  PubMed  Google Scholar 

  45. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78.

    Article  CAS  PubMed  Google Scholar 

  47. Bagni C, Greenough WT. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nature Reviews Neuroscience. 2005;6:376–87.

    Article  CAS  PubMed  Google Scholar 

  48. Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet. 2001;98:161–7.

    Article  CAS  PubMed  Google Scholar 

  49. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA. 1997;94:5401–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McKinney BC, Grossman AW, Elisseou NM, Greenough WT. Dendritic spine abnormalities in the occipital cortex of C57BL/6 Fmr1 knockout mice. Am J Med Genet B, Neuropsychiatr Genet. 2005;136b:98–102.

    Article  PubMed  Google Scholar 

  51. Pan F, Aldridge GM, Greenough WT, Gan WB. Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome. Proc Natl Acad Sci USA. 2010;107:17768–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cruz-Martin A, Crespo M, Portera-Cailliau C. Delayed stabilization of dendritic spines in fragile X mice. J Neurosci. 2010;30:7793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Padmashri R, Reiner BC, Suresh A, Spartz E, Dunaevsky A. Altered structural and functional synaptic plasticity with motor skill learning in a mouse model of fragile X syndrome. J Neurosci. 2013;33:19715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suresh A, Dunaevsky A. Relationship between synaptic AMPAR and spine dynamics: impairments in the FXS mouse. Cerebral Cortex. 2017;27:4244–56.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang H, Wu LJ, Kim SS, Lee FJ, Gong B, Toyoda H, et al. FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron. 2008;59:634–47.

    Article  CAS  PubMed  Google Scholar 

  56. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Research Molecular Brain Research. 1998;57:1–9.

    Article  CAS  PubMed  Google Scholar 

  57. Xu R, Li X, Boreland AJ, Posyton A, Kwan K, Hart RP, et al. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat Commun. 2020;11:1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hopperton KE, Mohammad D, Trépanier MO, Giuliano V, Bazinet RP. Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry. 2018;23:177–98.

    Article  CAS  PubMed  Google Scholar 

  59. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

    Article  CAS  PubMed  Google Scholar 

  60. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012;35:369–89.

    Article  CAS  PubMed  Google Scholar 

  62. Chu Y, Jin X, Parada I, Pesic A, Stevens B, Barres B, et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc Natl Acad Sci USA. 2010;107:7975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bialas AR, Stevens B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. 2013;16:1773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Datta D, Leslie SN, Morozov YM, Duque A, Rakic P, van Dyck CH, et al. Classical complement cascade initiating C1q protein within neurons in the aged rhesus macaque dorsolateral prefrontal cortex. J Neuroinflammation. 2020;17:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dejanovic B, Huntley MA, De Mazière A, Meilandt WJ, Wu T, Srinivasan K, et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. Neuron. 2018;100:1322–27.

    Article  CAS  PubMed  Google Scholar 

  66. Schreiber J, Vegh MJ, Dawitz J, Kroon T, Loos M, Labonte D, et al. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic gamma-actin levels. J Cell Biol. 2015;211:569–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pfeiffer BE, Zang T, Wilkerson JR, Taniguchi M, Maksimova MA, Smith LN, et al. Fragile X mental retardation protein is required for synapse elimination by the activity-dependent transcription factor MEF2. Neuron. 2010;66:191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Benger M, Kinali M, Mazarakis ND. Autism spectrum disorder: prospects for treatment using gene therapy. Mol Autism. 2018;9:39.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pena SA, Iyengar R, Eshraghi RS, Bencie N, Mittal J, Aljohani A, et al. Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target. 2020;28:111–28.

    Article  CAS  PubMed  Google Scholar 

  71. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713–22.

    Article  CAS  PubMed  Google Scholar 

  72. Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, et al. Deciphering the splicing code. Nature. 2010;465:53–59.

    Article  CAS  PubMed  Google Scholar 

  73. Zhai D, Lee FHF, D’Souza C, Su P, Zhang S, Jia Z, et al. Blocking GluR2–GAPDH ameliorates experimental autoimmune encephalomyelitis. Ann Clin Transl Neurol. 2015;2:388–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by Canadian Institute of Health Research (FL), and Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto (FL). FL holds the Tapscott Chair in Schizophrenia studies.

Author information

Authors and Affiliations

Authors

Contributions

FL oversaw and designed the framework of the research. PS designed and performed biochemistry experiments, Golgi-Cox staining, behavioural tests, and analyzed data with help from FHFL (spine density) and TKYL (behavioural tests). KC, LH, HZ, and GY designed, conducted and analyzed the data from in vivo transcranial two-photon imaging. SY, LW, and AJ performed the immunohistochemical analysis. PS, SY, LH, HZ, LW, and AJ prepared the figures. FL, PS, SY, LW, LH, HZ, JS, GY, and AHCW wrote the manuscript.

Corresponding author

Correspondence to Fang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, P., Yan, S., Chen, K. et al. EF1α-associated protein complexes affect dendritic spine plasticity by regulating microglial phagocytosis in Fmr1 knock-out mice. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-023-02396-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02396-2

Search

Quick links