Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Convergence of the dysregulated regulome in schizophrenia with polygenic risk and evolutionarily constrained enhancers

Abstract

Enhancers play an essential role in the etiology of schizophrenia; however, the dysregulation of enhancer activity and its impact on the regulome in schizophrenia remains understudied. To address this gap in our knowledge, we assessed enhancer and gene expression in 1,382 brain samples comprising cases with schizophrenia and unaffected controls. Dysregulation of enhancer expression was concordant with changes in gene expression, and was more closely associated with schizophrenia polygenic risk, suggesting that enhancer dysregulation is proximal to the genetic etiology of the disease. Modeling the shared variance of cis-coordinated genes and enhancers revealed a gene regulatory program that was highly associated with genetic vulnerability to schizophrenia. By integrating coordinated factors with evolutionary constraints, we found that enhancers acquired during human evolution are more likely to regulate genes that are implicated in neuropsychiatric disorders and, thus, hold potential as therapeutic targets. Our analysis provides a systematic view of regulome dysregulation in schizophrenia and highlights its convergence with schizophrenia polygenic risk and human-gained enhancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Robust enhancer dysregulation in SCZ.
Fig. 2: Concordant perturbation in SCZ between enhancers and gene expression.
Fig. 3: Association between gene/enhancer expression and PRS.
Fig. 4: MOFA decomposition of EP-linked genes and enhancers.
Fig. 5: Evolutionary nonconserved enhancers associated with neuropsychiatric disorders.

Similar content being viewed by others

Data availability

CMC human and macaque RNA-seq data are available through the CMC Knowledge Portal. The CMC investigators are committed to the release of data and analysis results, with the anticipation that data sharing in a rapid and transparent manner will speed the pace of research to the benefit of the greater research community. Data are available for general research use according to following requirements for data access and data attribution detailed at https://www.synapse.org//#!Synapse:syn2759792/wiki/197282.

Code availability

Supporting code for the analysis is available at https://zenodo.org/records/10149932. Further information and requests may be directed to the corresponding author, Pengfei Dong (pengfei.dong@mssm.edu), or Panos Roussos (panagiotis.roussos@mssm.edu).

References

  1. Zaugg JB, Sahlén P, Andersson R, Alberich-Jorda M, de Laat W, Deplancke B, et al. Current challenges in understanding the role of enhancers in disease. Nat Struct Mol Biol. 2022;29:1148–58.

    Article  PubMed  CAS  Google Scholar 

  2. Schoenfelder S, Fraser P. Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet. 2019;20:437–55.

    Article  PubMed  CAS  Google Scholar 

  3. Long HK, Prescott SL, Wysocka J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell. 2016;167:1170–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol. 2015;16:144–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yap E-L, Greenberg ME. Activity-regulated transcription: bridging the gap between neural activity and behavior. Neuron. 2018;100:330–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers: five essential questions. Nat Rev Genet. 2013;14:288–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pollard KS, Salama SR, King B, Kern AD, Dreszer T, Katzman S, et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet. 2006;2:e168.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reilly SK, Yin J, Ayoub AE, Emera D, Leng J, Cotney J, et al. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science. 2015;347:1155–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Vermunt MW, Tan SC, Castelijns B, Geeven G, Reinink P, de Bruijn E, et al. Epigenomic annotation of gene regulatory alterations during evolution of the primate brain. Nat Neurosci. 2016;19:494–503.

    Article  PubMed  CAS  Google Scholar 

  10. Won H, Huang J, Opland CK, Hartl CL, Geschwind DH. Human evolved regulatory elements modulate genes involved in cortical expansion and neurodevelopmental disease susceptibility. Nat Commun. 2019;10:2396.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lemaitre H, Le Guen Y, Tilot AK, Stein JL, Philippe C, Mangin JF, et al. Genetic variations within human gained enhancer elements affect human brain sulcal morphology. Neuroimage. 2023;265:119773.

    Article  PubMed  CAS  Google Scholar 

  12. Varki A, Geschwind DH, Eichler EE. Explaining human uniqueness: genome interactions with environment, behaviour and culture. Nat Rev Genet. 2008;9:749–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Dong P, Hoffman GE, Apontes P, Bendl J, Rahman S, Fernando MB, et al. Population-level variation in enhancer expression identifies disease mechanisms in the human brain. Nat Genet. 2022;54:1493–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bryois J, Garrett ME, Song L, Safi A, Giusti-Rodriguez P, Johnson GD, et al. Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat Commun. 2018;9:3121.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhu K, Bendl J, Rahman S, Vicari JM, Coleman C, Clarence T, et al. Multi-omic profiling of the developing human cerebral cortex at the single cell level. BioRxiv 2022. https://doi.org/10.1101/2022.10.14.512250.

  16. Hauberg ME, Creus-Muncunill J, Bendl J, Kozlenkov A, Zeng B, Corwin C, et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat Commun. 2020;11:5581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 2018; 362. https://doi.org/10.1126/science.aat8127.

  18. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jaffe AE, Straub RE, Shin JH, Tao R, Gao Y, Collado-Torres L, et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci. 2018;21:1117–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yao DW, O’Connor LJ, Price AL, Gusev A. Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat Genet. 2020;52:626–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Porcu E, Sadler MC, Lepik K, Auwerx C, Wood AR, Weihs A, et al. Differentially expressed genes reflect disease-induced rather than disease-causing changes in the transcriptome. Nat Commun. 2021;12:5647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat Genet. 2014;46:1311–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tippens ND, Liang J, Leung AKY, Wierbowski SD, Ozer A, Booth JG, et al. Transcription imparts architecture, function and logic to enhancer units. Nat Genet. 2020;52:1067–75.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hoffman GE, Bendl J, Voloudakis G, Montgomery KS, Sloofman L, Wang YC, et al. CommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and Bipolar Disorder. Sci Data. 2019;6:180.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Perzel Mandell KA, Eagles NJ, Deep-Soboslay A, Tao R, Han S, Wilton R, et al. Molecular phenotypes associated with antipsychotic drugs in the human caudate nucleus. Mol Psychiatry. 2022;27:2061–7.

    Article  PubMed  CAS  Google Scholar 

  27. Semick SA, Collado-Torres L, Markunas CA, Shin JH, Deep-Soboslay A, Tao R, et al. Developmental effects of maternal smoking during pregnancy on the human frontal cortex transcriptome. Mol Psychiatry. 2020;25:3267–77.

    Article  PubMed  Google Scholar 

  28. Lake BB, Chen S, Sos BC, Fan J, Kaeser GE, Yung YC, et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol. 2018;36:70–80.

    Article  PubMed  CAS  Google Scholar 

  29. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 2018; 362. https://doi.org/10.1126/science.aat8464.

  31. Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018;14:e8124.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koopmans F, van Nierop P, Andres-Alonso M, Byrnes A, Cijsouw T, Coba MP, et al. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron. 2019;103:217–234.e4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dong P, Bendl J, Misir R, Shao Z, Edelstien J, Davis DA, et al. Transcriptome and chromatin accessibility landscapes across 25 distinct human brain regions expand the susceptibility gene set for neuropsychiatric disorders. BioRxiv 2022. https://doi.org/10.1101/2022.09.02.506419.

  34. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604:509–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar HA, et al. Genetic identification of brain cell types underlying schizophrenia. Nat Genet. 2018;50:825–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Romero C, Werme J, Jansen PR, Gelernter J, Stein MB, Levey D, et al. Exploring the genetic overlap between twelve psychiatric disorders. Nat Genet. 2022;54:1795–802.

    Article  PubMed  CAS  Google Scholar 

  38. Hu G, Li J, Wang G-Z. Significant evolutionary constraints on neuron cells revealed by single-cell transcriptomics. Genome Biol Evol. 2020;12:300–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Trevino AE, Sinnott-Armstrong N, Andersen J, Yoon SJ, Huber N, Pritchard JK, et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 2020;367. https://doi.org/10.1126/science.aay1645.

  40. Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov. 2015;14:543–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Geschwind DH, Rakic P. Cortical evolution: judge the brain by its cover. Neuron. 2013;80:633–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wafford KA, Macaulay AJ, Fradley R, O’Meara GF, Reynolds DS, Rosahl TW. Differentiating the role of gamma-aminobutyric acid type A (GABAA) receptor subtypes. Biochem Soc Trans. 2004;32:553–6.

    Article  PubMed  CAS  Google Scholar 

  43. Gill KM, Grace AA. The role of α5 GABAA receptor agonists in the treatment of cognitive deficits in schizophrenia. Curr Pharm Des. 2014;20:5069–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Marques TR, Ashok AH, Angelescu I, Borgan F, Myers J, Lingford-Hughes A, et al. GABA-A receptor differences in schizophrenia: a positron emission tomography study using [11C]Ro154513. Mol Psychiatry. 2021;26:2616–25.

    Article  PubMed  CAS  Google Scholar 

  45. Rudolph U, Möhler H. GABAA receptor subtypes: Therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism. Annu Rev Pharm Toxicol. 2014;54:483–507.

    Article  CAS  Google Scholar 

  46. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  PubMed  CAS  Google Scholar 

  48. van de Geijn B, McVicker G, Gilad Y, Pritchard JK. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat Methods. 2015;12:1061–3.

    Article  PubMed  PubMed Central  Google Scholar 

  49. DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 2012;28:1530–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011;12:323.

    Article  CAS  Google Scholar 

  51. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  PubMed  CAS  Google Scholar 

  52. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hoffman GE, Roussos P. Dream: powerful differential expression analysis for repeated measures designs. Bioinformatics. 2021;37:192–201.

    Article  PubMed  CAS  Google Scholar 

  54. Hoffman GE, Schadt EE. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinforma. 2016;17:483.

    Article  Google Scholar 

  55. Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, et al. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2019;47:D853–D858.

    Article  PubMed  CAS  Google Scholar 

  56. Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S, Walters JT, O’Donovan MC Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv 2020. https://doi.org/10.1101/2020.09.12.20192922.

  57. Ge T, Chen CY, Ni Y, Feng YCA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun. 2019;10:1776.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015;47:1228–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. International HapMap Consortium. The international hapmap project. Nature. 2003;426:789–96.

    Article  Google Scholar 

  61. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  Google Scholar 

  62. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Walker RL, Ramaswami G, Hartl C, Mancuso N, Gandal MJ, de la Torre-Ubieta L, et al. Genetic control of expression and splicing in developing human brain informs disease mechanisms. Cell. 2020;181:745.

    Article  PubMed  CAS  Google Scholar 

  64. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  66. Hartl CL, Ramaswami G, Pembroke WG, Muller S, Pintacuda G, Saha A, et al. Coexpression network architecture reveals the brain-wide and multiregional basis of disease susceptibility. Nat Neurosci. 2021;24:1313–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni JC, et al. MOFA + : a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020;21:111.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the computational resources and staff expertise provided by the Scientific Computing of the Icahn School of Medicine at Mount Sinai. This study was supported by NIH awards R01MH125246, R01AG065582, R01AG067025, R01AG050986, U01MH116442, R01MH109677 to P.R. P.D. was supported in part by NARSAD Young Investigator Grant 29683 from the Brain & Behavior Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

PD and PR conceived and designed the project. PD designed analytical strategies, performed all downstream omics data analyses, and interpreted results. GV conducted the PRS analysis. GEH, JFF, and PR supervised data analysis. PD and PR wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Pengfei Dong or Panos Roussos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, P., Voloudakis, G., Fullard, J.F. et al. Convergence of the dysregulated regulome in schizophrenia with polygenic risk and evolutionarily constrained enhancers. Mol Psychiatry (2023). https://doi.org/10.1038/s41380-023-02370-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02370-y

Search

Quick links