Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting Nociceptin/Orphanin FQ receptor to rescue cognitive symptoms in a mouse neuroendocrine model of chronic stress

Abstract

Chronic stress causes cognitive deficits, such as impairments in episodic-like hippocampus-dependent memory. Stress regulates an opioid-related neuropeptide named Nociceptin/Orphanin FQ (N/OFQ), the ligand of the G protein-coupled receptor NOP. Since this peptide has deleterious effects on memory, we hypothesized that the N/OFQ system could be a mediator of the negative effects of stress on memory. Chronic stress was mimicked by chronic exposure to corticosterone (CORT). The NOP receptor was either acutely blocked using selective antagonists, or knocked-down specifically in the hippocampus using genetic tools. Long-term memory was assessed in the object recognition (OR) and object location (OL) paradigms. Acute injection of NOP antagonists before learning had a negative impact on memory in naive mice whereas it restored memory performances in the chronic stress model. This rescue was associated with a normalization of neuronal cell activity in the CA3 part of the hippocampus. Chronic CORT induced an upregulation of the N/OFQ precursor in the hippocampus. Knock-down of the NOP receptor in the CA3/Dentate Gyrus region prevented memory deficits in the CORT model. These data demonstrate that blocking the N/OFQ system can be beneficial for long-term memory in a neuroendocrine model of chronic stress. We therefore suggest that NOP antagonists could be useful for the treatment of memory deficits in stress-related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of NOP receptor antagonists on memory.
Fig. 2: Effect of NOP receptor antagonists on long-term recognition and location memory deficits in the chronic stress model.
Fig. 3: Lack of modulation of anxiety, depressive-like behavior, and HPA axis reactivity by the NOP antagonist in the chronic stress model.
Fig. 4: Modulation of N/OFQ precursor and NOP receptor mRNA expression by chronic CORT.
Fig. 5: Modulation of neuronal activity in the hippocampus following memory acquisition after chronic CORT and acute SB-612,111 treatment.
Fig. 6: Conditional knockout of NOP receptor in the hippocampus restores long-term recognition and location memory performances following chronic CORT exposure.

Similar content being viewed by others

Data availability

Raw data are available from the corresponding author upon request.

References

  1. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434–45.

    Article  CAS  PubMed  Google Scholar 

  2. Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NP, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci. 1998;1:69–73.

    Article  CAS  PubMed  Google Scholar 

  3. Darcet F, Mendez-David I, Tritschler L, Gardier AM, Guilloux JP, David DJ. Learning and memory impairments in a neuroendocrine mouse model of anxiety/depression. Front Behav Neurosci. 2014;8:136.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim EJ, Pellman B, Kim JJ. Stress effects on the hippocampus: a critical review. Learn Mem. 2015;22:411–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Luine V, Villegas M, Martinez C, McEwen BS. Repeated stress causes reversible impairments of spatial memory performance. Brain Res. 1994;639:167–70.

    Article  CAS  PubMed  Google Scholar 

  6. Magarinos AM, Verdugo JM, McEwen BS. Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA. 1997;94:14002–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sandi C, Pinelo-Nava MT. Stress and memory: behavioral effects and neurobiological mechanisms. Neural Plast. 2007;2007:78970.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rock PL, Roiser JP, Riedel WJ, Blackwell AD. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med. 2014;44:2029–40.

    Article  CAS  PubMed  Google Scholar 

  9. Miskowiak KW, Ott CV, Petersen JZ, Kessing LV. Systematic review of randomized controlled trials of candidate treatments for cognitive impairment in depression and methodological challenges in the field. Eur Neuropsychopharmacol. 2016;26:1845–67.

    Article  CAS  PubMed  Google Scholar 

  10. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, et al. Isolation and structure of the endogenous agonist of opioid receptor- like ORL1 receptor. Nature. 1995;377:532–5.

    Article  CAS  PubMed  Google Scholar 

  11. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, et al. Orphanin FQ: a neuropeptide that activates an opioidlike G protein- coupled receptor. Science. 1995;270:792–4.

    Article  CAS  PubMed  Google Scholar 

  12. Mollereau C, Mouledous L. Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides. 2000;21:907–17.

    Article  CAS  PubMed  Google Scholar 

  13. Anand P, Yiangou Y, Anand U, Mukerji G, Sinisi M, Fox M, et al. Nociceptin/orphanin FQ receptor expression in clinical pain disorders and functional effects in cultured neurons. Pain. 2016;157:1960–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ding H, Kiguchi N, Yasuda D, Daga PR, Polgar WE, Lu JJ, et al. A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med. 2018;10:eaar3483.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jais A, Paeger L, Sotelo-Hitschfeld T, Bremser S, Prinzensteiner M, Klemm P, et al. PNOC(ARC) neurons promote hyperphagia and obesity upon high-fat-diet feeding. Neuron. 2020;106:1009–25.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith MA, Choudhury AI, Glegola JA, Viskaitis P, Irvine EE, de Campos Silva PCC, et al. Extrahypothalamic GABAergic nociceptin-expressing neurons regulate AgRP neuron activity to control feeding behavior. J Clin Invest. 2020;130:126–42.

    Article  CAS  PubMed  Google Scholar 

  17. Hardaway JA, Halladay LR, Mazzone CM, Pati D, Bloodgood DW, Kim M, et al. Central amygdala prepronociceptin-expressing neurons mediate palatable food consumption and reward. Neuron. 2019;102:1037–52.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parker KE, Pedersen CE, Gomez AM, Spangler SM, Walicki MC, Feng SY, et al. A paranigral VTA nociceptin circuit that constrains motivation for reward. Cell. 2019;178:653–71.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodriguez-Romaguera J, Ung RL, Nomura H, Otis JM, Basiri ML, Namboodiri VMK, et al. Prepronociceptin-expressing neurons in the extended amygdala encode and promote rapid arousal responses to motivationally salient stimuli. Cell Rep. 2020;33:108362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kallupi M, Carrette LLG, Kononoff J, Solberg Woods LC, Palmer AA, Schweitzer P, et al. Nociceptin attenuates the escalation of oxycodone self-administration by normalizing CeA-GABA transmission in highly addicted rats. Proc Natl Acad Sci USA. 2020;117:2140–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morairty SR, Sun Y, Toll L, Bruchas MR, Kilduff TS. Activation of the nociceptin/orphanin-FQ receptor promotes NREM sleep and EEG slow wave activity. Proc Natl Acad Sci USA. 2023;120:e2214171120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Andero R, Brothers SP, Jovanovic T, Chen YT, Salah-Uddin H, Cameron M, et al. Amygdala-dependent fear is regulated by Oprl1 in mice and humans with PTSD. Sci Transl Med. 2013;5:188ra73.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Narendran R, Tollefson S, Fasenmyer K, Paris J, Himes ML, Lopresti B, et al. Decreased Nociceptin Receptors Are Related to Resilience and Recovery in College Women Who Have Experienced Sexual Violence: Therapeutic Implications for Posttraumatic Stress Disorder. Biol Psychiatry. 2019;85:1056–1064.

  24. Toll L, Cippitelli A, Ozawa A. The NOP receptor system in neurological and psychiatric disorders: discrepancies, peculiarities and clinical progress in developing targeted therapies. CNS Drugs. 2021;35:591–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zaveri NT. Nociceptin Opioid Receptor (NOP) as a therapeutic target: progress in translation from preclinical research to clinical utility. J Med Chem. 2016;59:7011–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Al Yacoub ON, Awwad HO, Zhang Y, Standifer KM. Therapeutic potential of nociceptin/orphanin FQ peptide (NOP) receptor modulators for treatment of traumatic brain injury, traumatic stress, and their co-morbidities. Pharm Ther. 2022;231:107982.

    Article  CAS  Google Scholar 

  27. Gavioli EC, Holanda VAD, Calo G, Ruzza C. Nociceptin/orphanin FQ receptor system blockade as an innovative strategy for increasing resilience to stress. Peptides. 2021;141:170548.

    Article  CAS  PubMed  Google Scholar 

  28. Post A, Smart TS, Krikke-Workel J, Dawson GR, Harmer CJ, Browning M, et al. A selective nociceptin receptor antagonist to treat depression: evidence from preclinical and clinical studies. Neuropsychopharmacology. 2016;41:1803–12.

    Article  CAS  PubMed  Google Scholar 

  29. Ubaldi M, Cannella N, Borruto AM, Petrella M, Micioni Di Bonaventura MV, Soverchia L, et al. Role of nociceptin/orphanin FQ-NOP receptor system in the regulation of stress-related disorders. Int J Mol Sci. 2021;22:12956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berthele A, Platzer S, Dworzak D, Schadrack J, Mahal B, Buttner A, et al. [3H]-nociceptin ligand-binding and nociceptin opioid receptor mrna expression in the human brain. Neuroscience. 2003;121:629–40.

    Article  CAS  PubMed  Google Scholar 

  31. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H, et al. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I- [(14)Tyr]-orphanin FQ binding. J Comp Neurol. 1999;412:563–605.

    Article  CAS  PubMed  Google Scholar 

  32. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ Jr. Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol. 1999;406:503–47.

    Article  CAS  PubMed  Google Scholar 

  33. Ozawa A, Brunori G, Mercatelli D, Wu J, Cippitelli A, Zou B, et al. Knock-in mice with NOP-eGFP receptors identify receptor cellular and regional localization. J Neurosci. 2015;35:11682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mouledous L. The nociceptin/orphanin FQ System and the Regulation of Memory. Handb Exp Pharm. 2019;254:259–78.

    Article  CAS  Google Scholar 

  35. Higgins GA, Kew JN, Richards JG, Takeshima H, Jenck F, Adam G, et al. A combined pharmacological and genetic approach to investigate the role of orphanin FQ in learning and memory. Eur J Neurosci. 2002;15:911–22.

    Article  CAS  PubMed  Google Scholar 

  36. Sandin J, Georgieva J, Schott PA, Ogren SO, Terenius L. Nociceptin/orphanin FQ microinjected into hippocampus impairs spatial learning in rats. Eur J Neurosci. 1997;9:194–7.

    Article  CAS  PubMed  Google Scholar 

  37. Fornari RV, Soares JC, Ferreira TL, Moreira KM, Oliveira MG. Effects of nociceptin/orphanin FQ in the acquisition of contextual and tone fear conditioning in rats. Behav Neurosci. 2008;122:98–106.

    Article  CAS  PubMed  Google Scholar 

  38. Goeldner C, Reiss D, Wichmann J, Kieffer BL, Ouagazzal AM. Activation of nociceptin opioid peptide (NOP) receptor impairs contextual fear learning in mice through glutamatergic mechanisms. Neurobiol Learn Mem. 2009;91:393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mamiya T, Noda Y, Nishi M, Takeshima H, Nabeshima T. Nociceptin system plays a role in the memory retention: involvement of naloxone benzoylhydrazone binding sites. Neuroreport. 1999;10:1171–5.

    Article  CAS  PubMed  Google Scholar 

  40. Rekik K, Faria Da Silva R, Colom M, Pacifico S, Zaveri NT, Calo G, et al. Activation of nociceptin/orphanin FQ receptors inhibits contextual fear memory reconsolidation. Neuropharmacology. 2017;125:39–49.

    Article  CAS  PubMed  Google Scholar 

  41. Goeldner C, Reiss D, Wichmann J, Meziane H, Kieffer BL, Ouagazzal AM. Nociceptin receptor impairs recognition memory via interaction with NMDA receptor-dependent mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in the hippocampus. J Neurosci. 2008;28:2190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Devine DP, Hoversten MT, Ueda Y, Akil H. Nociceptin/orphanin FQ content is decreased in forebrain neurones during acute stress. J Neuroendocr. 2003;15:69–74.

    Article  CAS  Google Scholar 

  43. Nativio P, Pascale E, Maffei A, Scaccianoce S, Passarelli F. Effect of stress on hippocampal nociceptin expression in the rat. Stress. 2012;15:378–84.

    Article  CAS  PubMed  Google Scholar 

  44. Green MK, Devine DP. Nociceptin/orphanin FQ and NOP receptor gene regulation after acute or repeated social defeat stress. Neuropeptides. 2009;43:507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reiss D, Wolter-Sutter A, Krezel W, Ouagazzal AM. Effects of social crowding on emotionality and expression of hippocampal nociceptin/orphanin FQ system transcripts in mice. Behav Brain Res. 2007;184:167–73.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Gandhi PR, Standifer KM. Increased nociceptive sensitivity and nociceptin/orphanin FQ levels in a rat model of PTSD. Mol Pain. 2012;8:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vitale G, Ruggieri V, Filaferro M, Frigeri C, Alboni S, Tascedda F, et al. Chronic treatment with the selective NOP receptor antagonist [Nphe 1, Arg 14, Lys 15]N/OFQ-NH 2 (UFP-101) reverses the behavioural and biochemical effects of unpredictable chronic mild stress in rats. Psychopharmacol Berl. 2009;207:173–89.

    Article  CAS  Google Scholar 

  48. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62:479–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Andero R. Nociceptin and the nociceptin receptor in learning and memory. Prog Neuropsychopharmacol Biol Psychiatry. 2015;62:45–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sandin J, Ogren SO, Terenius L. Nociceptin/orphanin FQ modulates spatial learning via ORL-1 receptors in the dorsal hippocampus of the rat. Brain Res. 2004;997:222–33.

    Article  CAS  PubMed  Google Scholar 

  51. Adem A, Madjid N, Kahl U, Holst S, Sadek B, Sandin J, et al. Nociceptin and the NOP receptor in aversive learning in mice. Eur Neuropsychopharmacol. 2017;27:1298–307.

    Article  CAS  PubMed  Google Scholar 

  52. Delaney G, Dawe KL, Hogan R, Hunjan T, Roper J, Hazell G, et al. Role of nociceptin/orphanin FQ and NOP receptors in the response to acute and repeated restraint stress in rats. J Neuroendocr. 2012;24:1527–41.

    Article  CAS  Google Scholar 

  53. D’Oliveira da Silva F, Azevedo Neto J, Sturaro C, Guarino A, Robert C, Gavioli EC, et al. The NOP antagonist BTRX-246040 increases stress resilience in mice without affecting adult neurogenesis in the hippocampus. Neuropharmacology. 2022;212:109077.

    Article  PubMed  Google Scholar 

  54. Fulford AJ. Endogenous nociceptin system involvement in stress responses and anxiety behavior. Vitam Horm. 2015;97:267–93.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Simpson-Durand CD, Standifer KM, Nociceptin/orphanin FQ. peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder. Br J Pharm. 2015;172:571–82.

    Article  CAS  Google Scholar 

  56. Conrad CD. A critical review of chronic stress effects on spatial learning and memory. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:742–55.

    Article  PubMed  Google Scholar 

  57. Finsterwald C, Alberini CM. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies. Neurobiol Learn Mem. 2014;112:17–29.

    Article  CAS  PubMed  Google Scholar 

  58. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev. 2022;141:104855.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brown ES. Effects of glucocorticoids on mood, memory, and the hippocampus. Treatment and preventive therapy. Ann N Acad Sci. 2009;1179:41–55.

    Article  CAS  Google Scholar 

  61. Barker GR, Warburton EC. When is the hippocampus involved in recognition memory? J Neurosci. 2011;31:10721–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cohen SJ, Munchow AH, Rios LM, Zhang G, Asgeirsdottir HN, Stackman RW Jr. The rodent hippocampus is essential for nonspatial object memory. Curr Biol. 2013;23:1685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci. 2017;18:208–20.

    Article  CAS  PubMed  Google Scholar 

  64. Stefanelli T, Bertollini C, Luscher C, Muller D, Mendez P. Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron. 2016;89:1074–85.

    Article  CAS  PubMed  Google Scholar 

  65. Topolnik L, Tamboli S. The role of inhibitory circuits in hippocampal memory processing. Nat Rev Neurosci. 2022;23:476–92.

    Article  CAS  PubMed  Google Scholar 

  66. Ikeda K, Watanabe M, Ichikawa T, Kobayashi T, Yano R, Kumanishi T. Distribution of prepro-nociceptin/orphanin FQ mRNA and its receptor mRNA in developing and adult mouse central nervous systems. J Comp Neurol. 1998;399:139–51.

    Article  CAS  PubMed  Google Scholar 

  67. Law J, Ibarguen-Vargas Y, Belzung C, Surget A. Decline of hippocampal stress reactivity and neuronal ensemble coherence in a mouse model of depression. Psychoneuroendocrinology. 2016;67:113–23.

    Article  CAS  PubMed  Google Scholar 

  68. Tomar A, McHugh TJ. The impact of stress on the hippocampal spatial code. Trends Neurosci. 2022;45:120–32.

    Article  CAS  PubMed  Google Scholar 

  69. Fee C, Banasr M, Sibille E. Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: cortical microcircuit and therapeutic perspectives. Biol Psychiatry. 2017;82:549–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Prevot T, Sibille E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Mol Psychiatry. 2021;26:151–67.

    Article  CAS  PubMed  Google Scholar 

  71. Cavallini S, Marino S, Beani L, Bianchi C, Siniscalchi A. Nociceptin inhibition of acetylcholine efflux from different brain areas. Neuroreport. 2003;14:2167–70.

    Article  CAS  PubMed  Google Scholar 

  72. Uezu K, Sano A, Sei H, Toida K, Houtani T, Sugimoto T, et al. Enhanced hippocampal acetylcholine release in nociceptin-receptor knockout mice. Brain Res. 2005;1050:118–23.

    Article  CAS  PubMed  Google Scholar 

  73. Watanabe Y, Gould E, Cameron HA, Daniels DC, McEwen BS. Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus. 1992;2:431–5.

    Article  CAS  PubMed  Google Scholar 

  74. Woolley CS, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 1990;531:225–31.

    Article  CAS  PubMed  Google Scholar 

  75. Caradonna SG, Einhorn NR, Saudagar V, Khalil H, Petty GH, Lihagen A, et al. Corticosterone induces discrete epigenetic signatures in the dorsal and ventral hippocampus that depend upon sex and genotype: focus on methylated Nr3c1 gene. Transl Psychiatry. 2022;12:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang Y, Schalo I, Durand C, Standifer KM. Sex differences in nociceptin/orphanin FQ peptide receptor-mediated pain and anxiety symptoms in a preclinical model of post-traumatic stress disorder. Front Psychiatry. 2018;9:731.

    Article  CAS  PubMed  Google Scholar 

  77. Witkin JM, Wallace TL, Martin WJ. Therapeutic approaches for NOP receptor antagonists in neurobehavioral disorders: clinical studies in major depressive disorder and alcohol use disorder with BTRX-246040 (LY2940094). Handb Exp Pharm. 2019;254:399–415.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the CBI-Anexplo mouse facility. We also thank the LITC imaging platform of Toulouse TRI, and Sébastien Gauzin from the Mouse Behavioral Core of CBI-Anexplo for support. We thank Dr Catherine Mollereau for critical reading of the manuscript.

Funding

This work was supported by the Centre National de la Recherche Scientifique (to LM), the Research Center on Animal Cognition (to LM), the French Ministry of Research (to FD), NIH grants, R21DA034929, and P50MH119467 (to MB).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FD, BG, LM; Methodology: FD, FC, MB, LM; Resources: CP, MB; Formal analysis: FD, BG, LM; Investigation: FD, CR, EL, LM; Visualization: FD; Writing—Original Draft: FD, LM; Writing—Review & Editing: FD, MB, BG, FC, LM; Funding Acquisition: FD, MB, LM; Supervision: FC, LM.

Corresponding author

Correspondence to Lionel Moulédous.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Oliveira da Silva, F., Robert, C., Lardant, E. et al. Targeting Nociceptin/Orphanin FQ receptor to rescue cognitive symptoms in a mouse neuroendocrine model of chronic stress. Mol Psychiatry (2023). https://doi.org/10.1038/s41380-023-02363-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02363-x

Search

Quick links