Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A primer on the use of machine learning to distil knowledge from data in biological psychiatry

Abstract

Applications of machine learning in the biomedical sciences are growing rapidly. This growth has been spurred by diverse cross-institutional and interdisciplinary collaborations, public availability of large datasets, an increase in the accessibility of analytic routines, and the availability of powerful computing resources. With this increased access and exposure to machine learning comes a responsibility for education and a deeper understanding of its bases and bounds, borne equally by data scientists seeking to ply their analytic wares in medical research and by biomedical scientists seeking to harness such methods to glean knowledge from data. This article provides an accessible and critical review of machine learning for a biomedically informed audience, as well as its applications in psychiatry. The review covers definitions and expositions of commonly used machine learning methods, and historical trends of their use in psychiatry. We also provide a set of standards, namely Guidelines for REporting Machine Learning Investigations in Neuropsychiatry (GREMLIN), for designing and reporting studies that use machine learning as a primary data-analysis approach. Lastly, we propose the establishment of the Machine Learning in Psychiatry (MLPsych) Consortium, enumerate its objectives, and identify areas of opportunity for future applications of machine learning in biological psychiatry. This review serves as a cautiously optimistic primer on machine learning for those on the precipice as they prepare to dive into the field, either as methodological practitioners or well-informed consumers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of trends in ML development relevant to psychiatric research.
Fig. 2: Distribution of types of ML methods used across 1461 surveyed publications.
Fig. 3: Distribution of types of disorders and phenotypes represented across 1461 surveyed publications.
Fig. 4: Distribution of types of ML models with respect to data modality and psychiatric outcomes across 1461 surveyed publications.

Similar content being viewed by others

References

  1. Alpaydin E. Machine learning, revised and updated edition. The MIT Press; 2021.

  2. Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–30.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tarca AL, Carey VJ, Chen X-W, Romero R, Drăghici S. Machine learning and its applications to biology. PLoS Comput Biol. 2007;3:e116.

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Ridder D, de Ridder J, Reinders MJT. Pattern recognition in bioinformatics. Brief Bioinform. 2013;14:633–47.

    Article  PubMed  Google Scholar 

  5. Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ. Multidimensional drug profiling by automated microscopy. Science. 2004;306:1194–8.

    Article  CAS  PubMed  Google Scholar 

  6. Li A, Walling J, Ahn S, Kotliarov Y, Su Q, Quezado M, et al. Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res. 2009;69:2091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng W-Y, Ou Yang T-H, Anastassiou D. Development of a prognostic model for breast cancer survival in an open challenge environment. Sci Transl Med. 2013;5:181ra50.

    Article  PubMed  Google Scholar 

  9. Cheng W-Y, Ou Yang T-H, Anastassiou D. Biomolecular events in cancer revealed by attractor metagenes. PLoS Comput Biol. 2013;9:e1002920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao M, Igata H, Takeuchi A, Sato K, Ikegaya Y. Machine learning-based prediction of adverse drug effects: An example of seizure-inducing compounds. J Pharm Sci. 2017;133:70–8.

    Article  CAS  Google Scholar 

  11. Leung MKK, Delong A, Alipanahi B, Frey BJ. Machine learning in genomic medicine: a review of computational problems and data sets. Proc IEEE. 2016;104:176–97.

    Article  Google Scholar 

  12. Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. New York, NY: Springer; 2009.

  13. Varghese B, Chen F, Hwang D, Palmer SL, De Castro Abreu AL, Ukimura O, et al. Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images. Sci Rep. 2019;9:1570.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pandey G, Pandey OP, Rogers AJ, Ahsen ME, Hoffman GE, Raby BA, et al. A nasal brush-based classifier of asthma identified by machine learning analysis of nasal RNA sequence data. Sci Rep. 2018;8:8826.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19:299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang K, Sun Y, Wu S, Zhou M, Zhang X, Zhou R, et al. Systematic imaging in medicine: a comprehensive review. Eur J Nucl Med Mol Imaging. 2021;48:1736–58.

    Article  PubMed  Google Scholar 

  17. Oliveira AL. Biotechnology, Big Data and Artificial Intelligence. Biotechnol J. 2019;14:e1800613.

    Article  PubMed  Google Scholar 

  18. Iniesta R, Stahl D, McGuffin P. Machine learning, statistical learning and the future of biological research in psychiatry. Psychol Med. 2016;46:2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuhn M, Johnson K. Applied predictive modeling. New York, NY: Springer; 2013.

  20. Lee Y, Ragguett R-M, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519–32.

    Article  PubMed  Google Scholar 

  21. Bzdok D, Meyer-Lindenberg A. Machine learning for precision psychiatry: opportunities and challenges. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:223–30.

    PubMed  Google Scholar 

  22. Vieira S, Pinaya WHL, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev. 2017;74:58–75.

    Article  PubMed  Google Scholar 

  23. Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches for clinical psychology and psychiatry. Annu Rev Clin Psychol. 2018;14:91–118.

    Article  PubMed  Google Scholar 

  24. Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev. 2015;57:328–49.

    Article  PubMed  Google Scholar 

  25. Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leweke FM, et al. Identification of a biological signature for schizophrenia in serum. Mol Psychiatry. 2012;17:494–502.

    Article  CAS  PubMed  Google Scholar 

  26. Bahn S, Noll R, Barnes A, Schwarz E, Guest PC. Challenges of introducing new biomarker products for neuropsychiatric disorders into the market. Int Rev Neurobiol. 2011;101:299–327.

    Article  PubMed  Google Scholar 

  27. Lee G, Nho K, Kang B, Sohn K-A, Kim D. Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Sci Rep. 2019;9:1952.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cui R, Liu M. RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Comput Med Imaging Graph. 2019;73:1–10.

    Article  PubMed  Google Scholar 

  29. Bellazzi R, Zupan B. Towards knowledge-based gene expression data mining. J Biomed Inf. 2007;40:787–802.

    Article  CAS  Google Scholar 

  30. Zhang C, Zhang S. Association rule mining: models and algorithms. Berlin, Heidelberg: Springer-Verlag; 2002.

  31. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv. 2009;41:15:1–15:58.

    Article  Google Scholar 

  32. Noto K, Majidi S, Edlow AG, Wick HC, Bianchi DW, Slonim DK. CSAX: characterizing systematic anomalies in eXpression data. J Comput Biol. 2015;22:402–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quinn TP, Nguyen T, Lee SC, Venkatesh S. Cancer as a tissue anomaly: classifying tumor transcriptomes based only on healthy data. Front Genet. 2019;10:599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Legendre P, Gallagher ED. Ecologically meaningful transformations for ordination of species data. Oecologia. 2001;129:271–80.

    Article  PubMed  Google Scholar 

  35. Pinaya WHL, Mechelli A, Sato JR. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. Hum Brain Mapp. 2019;40:944–54.

    Article  PubMed  Google Scholar 

  36. Zhang-James Y, Buitelaar JK, Rooij D, Faraone SV, The ENIGMA-ASD Working Group. Ensemble classification of autism spectrum disorder using structural magnetic resonance imaging features. JCPP Adv. 2021;1:e12042.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Geddes TA, Kim T, Nan L, Burchfield JG, Yang JYH, Tao D, et al. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis. BMC Bioinform. 2019;20:660.

    Article  CAS  Google Scholar 

  38. Gligorijevic V, Barot M, Bonneau R. deepNF: deep network fusion for protein function prediction. Bioinformatics. 2018;34:3873–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu X, Goldberg AB. Introduction to Semi-Supervised Learning. Synth Lect Artif Intell Mach Learn. 2009;3:1–130.

    Google Scholar 

  40. Mitchell TM. Machine learning. 1st ed. New York: McGraw-Hill Education; 1997.

  41. Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7:1–30.

    Google Scholar 

  42. Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning. Nat Methods. 2018;15:233–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Breen MS, Tylee DS, Maihofer AX, Neylan TC, Mehta D, Binder EB, et al. PTSD blood transcriptome mega-analysis: shared inflammatory pathways across biological sex and modes of trauma. Neuropsychopharmacology. 2018;43:469–81.

    Article  PubMed  Google Scholar 

  44. Bousman CA, Chana G, Glatt SJ, Chandler SD, Lucero GR, Tatro E, et al. Preliminary evidence of ubiquitin proteasome system dysregulation in schizophrenia and bipolar disorder: convergent pathway analysis findings from two independent samples. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:494–502.

    Article  CAS  PubMed  Google Scholar 

  45. Vawter MP, Philibert R, Rollins B, Ruppel PL, Osborn TW. Exon array biomarkers for the differential diagnosis of schizophrenia and bipolar disorder. Mol Neuropsychiatry. 2018;3:197–213.

    PubMed  PubMed Central  Google Scholar 

  46. Nazeen S, Palmer NP, Berger B, Kohane IS. Integrative analysis of genetic data sets reveals a shared innate immune component in autism spectrum disorder and its co-morbidities. Genome Biol. 2016;17:228.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kong SW, Collins CD, Shimizu-Motohashi Y, Holm IA, Campbell MG, Lee I-H, et al. Characteristics and predictive value of blood transcriptome signature in males with autism spectrum disorders. PLoS One. 2012;7:e49475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hicks SD, Ignacio C, Gentile K, Middleton FA. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr. 2016;16:52.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tsuang MT, Nossova N, Yager T, Tsuang M-M, Guo S-C, Shyu KG, et al. Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;133B:1–5.

    Article  PubMed  Google Scholar 

  50. Tylee DS, Hess JL, Quinn TP, Barve R, Huang H, Zhang-James Y, et al. Blood transcriptomic comparison of individuals with and without autism spectrum disorder: a combined-samples mega-analysis. Am J Med Genet B Neuropsychiatr Genet. 2017;174:181–201.

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi M, Hayashi H, Watanabe Y, Sawamura K, Fukui N, Watanabe J, et al. Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures. Schizophr Res. 2010;119:210–8.

    Article  PubMed  Google Scholar 

  52. Zhang H, Xie Z, Yang Y, Zhao Y, Zhang B, Fang J. The correlation-base-selection algorithm for diagnostic schizophrenia based on blood-based gene expression signatures. Biomed Res Int. 2017;2017:7860506.

    PubMed  PubMed Central  Google Scholar 

  53. Yi Z, Li Z, Yu S, Yuan C, Hong W, Wang Z, et al. Blood-based gene expression profiles models for classification of subsyndromal symptomatic depression and major depressive disorder. PLoS ONE. 2012;7:e31283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Struyf J, Dobrin S, Page D. Combining gene expression, demographic and clinical data in modeling disease: a case study of bipolar disorder and schizophrenia. BMC Genomics. 2008;9:531.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Breen MS, Uhlmann A, Nday CM, Glatt SJ, Mitt M, Metsalpu A, et al. Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: an integrative RNA-sequencing report. Transl Psychiatry. 2016;6:e802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hess JL, Tylee DS, Barve R, de Jong S, Ophoff RA, Kumarasinghe N, et al. Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia. Schizophr Res. 2016;176:114–24.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nicodemus KK, Malley JD. Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics. 2009;25:1884–90.

    Article  CAS  PubMed  Google Scholar 

  58. Nicodemus KK, Malley JD, Strobl C, Ziegler A. The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinform. 2010;11:110.

    Article  Google Scholar 

  59. Yassin W, Nakatani H, Zhu Y, Kojima M, Owada K, Kuwabara H, et al. Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl Psychiatry. 2020;10:278.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cho G, Yim J, Choi Y, Ko J, Lee S-H. Review of machine learning algorithms for diagnosing mental illness. Psychiatry Investig. 2019;16:262–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang-James Y, Chen Q, Kuja-Halkola R, Lichtenstein P, Larsson H, Faraone SV. Machine-Learning prediction of comorbid substance use disorders in ADHD youth using Swedish registry data. J Child Psychol Psychiatry. 2020;61:1370–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang-James Y, Razavi AS, Hoogman M, Franke B, Faraone SV. Machine learning and MRI-based diagnostic models for ADHD: are we there yet? J Atten Disord. 2023;27:335–53.

    Article  PubMed  Google Scholar 

  63. Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, Trivedi MH, et al. Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry. 2016;3:243–50.

    Article  PubMed  Google Scholar 

  64. Nie Z, Vairavan S, Narayan VA, Ye J, Li QS. Predictive modeling of treatment resistant depression using data from STAR*D and an independent clinical study. PLoS ONE. 2018;13:e0197268.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lenhard F, Sauer S, Andersson E, Månsson KN, Mataix-Cols D, Rück C, et al. Prediction of outcome in internet-delivered cognitive behaviour therapy for paediatric obsessive-compulsive disorder: a machine learning approach. Int J Methods Psychiatr Res. 2018;27:e1576.

    Article  PubMed  Google Scholar 

  66. Flygare O, Enander J, Andersson E, Ljótsson B, Ivanov VZ, Mataix-Cols D, et al. Predictors of remission from body dysmorphic disorder after internet-delivered cognitive behavior therapy: a machine learning approach. BMC Psychiatry. 2020;20:247.

    Article  PubMed  PubMed Central  Google Scholar 

  67. van Breda W, Bremer V, Becker D, Hoogendoorn M, Funk B, Ruwaard J, et al. Predicting therapy success for treatment as usual and blended treatment in the domain of depression. Internet Inter. 2018;12:100–4.

    Article  Google Scholar 

  68. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1:67–82.

    Article  Google Scholar 

  69. Koohy H. The rise and fall of machine learning methods in biomedical research. F1000Res. 2017;6:2012.

    Article  PubMed  Google Scholar 

  70. Molnar C. Interpretable machine learning. 2020. Lulu.com.

  71. Gountouna V-E, Bermingham M, Kuznetsova K, Urda Munoz D, Agakov F, Robson S, et al. Predictive machine learning for personalised medicine in major depressive disorder. medRxiv. 2022. https://doi.org/10.1101/2022.02.11.22270724.

  72. Strobl C, Boulesteix A-L, Zeileis A, Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform. 2007;8:25.

    Article  Google Scholar 

  73. Boulesteix A-L, Slawski M. Stability and aggregation of ranked gene lists. Brief Bioinform. 2009;10:556–68.

    Article  CAS  PubMed  Google Scholar 

  74. Verma S, Dickerson J, Hines K. Counterfactual explanations for machine learning: challenges revisited. arXiv. 2021. https://doi.org/10.48550/arXiv.2106.07756.

  75. Lundberg S, Lee S-I. A unified approach to interpreting model predictions. arXiv. 2017. https://doi.org/10.48550/arXiv.1705.07874.

  76. Tsang M, Liu H, Purushotham S, Murali P, Liu Y. Neural interaction transparency (NIT): disentangling learned interactions for improved interpretability. 2018:5809–18.

  77. Zhang Y, Yang Q. A Survey on Multi-Task Learning. IEEE Trans Knowl Data Eng. 2021. 1–1

  78. Widmer C, Rätsch G. Multitask learning in computational biology. In: Guyon I, Dror G, Lemaire V, Taylor G, Silver D, editors. Proc. ICML Workshop Unsupervised Transf. Learn., vol. 27, Bellevue, Washington, USA.

  79. Li Y, Wang J, Ye J, Reddy CK. A multi-task learning formulation for survival analysis. KDD 16, New York, NY, USA: ACM; 2016. p. 1715–24.

  80. Yuan H, Paskov I, Paskov H, González AJ, Leslie CS. Multitask learning improves prediction of cancer drug sensitivity. Sci Rep. 2016;6:31619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Feriante J. Massively multitask deep learning for drug discovery. University of Wisconsin-Madison, 2015.

  82. Xu Q, Pan SJ, Xue HH, Yang Q. Multitask learning for protein subcellular location prediction. IEEEACM Trans Comput Biol Bioinform. 2011;8:748–59.

    Article  Google Scholar 

  83. Zhou J, Liu J, Narayan VA, Ye J, Alzheimer’s Disease Neuroimaging Initiative. Modeling disease progression via multi-task learning. Neuroimage. 2013;78:233–48.

    Article  PubMed  Google Scholar 

  84. Perlich C. Learning curves in machine learning. In: Encyclopedia of machine learning and data mining, Boston, MA: Springer US; 2011. p. 577–80.

  85. Barnett E, Onete D, Salekin A, Faraone SV Genomic machine learning meta-regression: Insights on associations of study features with reported model performance. BioRxiv. 2022. https://doi.org/10.1101/2022.01.10.22268751.

  86. Stripelis D, Gupta U, Saleem H, Dhinagar N, Ghai T, Sanchez R, et al. Secure federated learning for neuroimaging. arXiv. 2022. https://doi.org/10.48550/arXiv.2205.05249.

  87. Vaid A, Jaladanki SK, Xu J, Teng S, Kumar A, Lee S, et al. Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach. JMIR Med Inf. 2021;9:e24207.

    Article  Google Scholar 

  88. Zhai Y, Ong Y-S, Tsang IW. The Emerging ‘Big Dimensionality’. IEEE Comput Intell Mag. 2014;9:14–26.

    Article  Google Scholar 

  89. Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23:2507–17.

    Article  CAS  PubMed  Google Scholar 

  90. Tang J, Alelyani S, Liu H. Feature selection for classification: a review. data classif. Algorithms Appl., CRC Press; 2014. p. 37–64.

  91. Sorzano COS, Vargas J, Pascual Montano A. A survey of dimensionality reduction techniques. ArXiv. 2014. https://doi.org/10.48550/arXiv.1403.2877

  92. Smialowski P, Frishman D, Kramer S. Pitfalls of supervised feature selection. Bioinformatics. 2010;26:440–3.

    Article  CAS  PubMed  Google Scholar 

  93. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. Feature selection for high-dimensional data. Springer; 2015.

  94. Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA. 2002;99:6562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016.

  96. Quinn TP, Lee SC, Venkatesh S, Nguyen T. Improving the classification of neuropsychiatric conditions using gene ontology terms as features. Am J Med Genet B Neuropsychiatr Genet. 2019;180:508–18.

    Article  PubMed  Google Scholar 

  97. Chawla NV Data Mining for Imbalanced Datasets: An Overview. In: Maimon O, Rokach L, editors. Data mining and knowledge discovery handbook. Boston, MA: Springer US; 2005. p. 853–67.

  98. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. 2015;10:e0118432.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Altman N, Krzywinski M. Graphical assessment of tests and classifiers. Nat Methods. 2021;18:840–2.

    Article  CAS  PubMed  Google Scholar 

  100. Zhao Q, Adeli E, Pohl KM. Training confounder-free deep learning models for medical applications. Nat Commun. 2020;11:6010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Loughman A, Quinn T, Nation ML, Reichelt A, Moore RJ, Van TTH, et al. Infant microbiota in colic: predictive associations with problem crying and subsequent child behavior. J Dev Orig Health Dis. 2021;12:260–70.

  102. Wang H, Wu Z, Xing EP. Removing confounding factors associated weights in deep neural networks improves the prediction accuracy for healthcare applications. Pac Symp Biocomput. 2019;24:54–65.

    PubMed  PubMed Central  Google Scholar 

  103. Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, et al. Domain-adversarial training of neural networks. J Mach Learn Res. 2016;17:2096–30.

    Google Scholar 

  104. Liu Y, Nyunoya T, Leng S, Belinsky SA, Tesfaigzi Y, Bruse S. Softwares and methods for estimating genetic ancestry in human populations. Hum Genomics. 2013;7:1.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3:1724–35.

    Article  CAS  PubMed  Google Scholar 

  106. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann Intern Med. 2018;169:866–72.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Quinn TP, Coghlan S. Readying medical students for medical AI: the need to embed AI ethics education. ArXiv. 2021. https://doi.org/10.48550/arXiv.2109.02866.

  108. Food and Drug Administration (FDA). Artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD) action plan.

  109. Franco D, Oneto L, Navarin N, Anguita D. Toward learning trustworthily from data combining privacy, fairness, and explainability: an application to face recognition. Entropy Basel Switz. 2021;23:1047.

  110. Nicodemus KK, Callicott JH, Higier RG, Luna A, Nixon DC, Lipska BK, et al. Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging. Hum Genet. 2010;127:441–52.

    Article  CAS  PubMed  Google Scholar 

  111. Nicodemus KK, Law AJ, Radulescu E, Luna A, Kolachana B, Vakkalanka R, et al. Biological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls. Arch Gen Psychiatry. 2010;67:991–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;110:12–22.

    Article  PubMed  Google Scholar 

  113. Song X, Liu X, Liu F, Wang C. Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis. Int J Med Inf. 2021;151:104484.

    Article  Google Scholar 

  114. Smith DL, Held P. Moving toward precision PTSD treatment: predicting veterans’ intensive PTSD treatment response using continuously updating machine learning models. Psychol Med. 2023;53:5500–9.

  115. Hess JL, Tylee DS, Barve R, de Jong S, Ophoff RA, Kumarasinghe N, et al. Transcriptomic abnormalities in peripheral blood in bipolar disorder, and discrimination of the major psychoses. Schizophr Res. 2020;217:124–35.

    Article  PubMed  Google Scholar 

  116. Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf Fusion. 2019;50:71–91.

    Article  PubMed  Google Scholar 

  117. Schwarz E, Leweke FM, Bahn S, Liò P. Clinical bioinformatics for complex disorders: a schizophrenia case study. BMC Bioinform. 2009;10:S6.

    Article  Google Scholar 

  118. Xia CH, Ma Z, Ciric R, Gu S, Betzel RF, Kaczkurkin AN, et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat Commun. 2018;9:3003.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Shomorony I, Cirulli ET, Huang L, Napier LA, Heister RR, Hicks M, et al. Unsupervised integration of multimodal dataset identifies novel signatures of health and disease. BioRxiv. 2018. https://doi.org/10.1101/432641.

  120. Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018;14:e8124.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Koutsouleris N, Meisenzahl EM, Borgwardt S, Riecher-Rössler A, Frodl T, Kambeitz J, et al. Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers. Brain. 2015;138:2059–73.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Doan NT, Kaufmann T, Bettella F, Jørgensen KN, Brandt CL, Moberget T, et al. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. Neuroimage Clin. 2017;15:719–31.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Cao H, Duan J, Lin D, Shugart YY, Calhoun V, Wang Y-P. Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs. Neuroimage. 2014;102:220–8.

    Article  PubMed  Google Scholar 

  124. Li YC, Wang L, Law JN, Murali TM, Pandey G. Integrating multimodal data through interpretable heterogeneous ensembles. Bioinforma Adv. 2022;2:vbac065.

    Article  Google Scholar 

  125. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 2018;15:20170387.

  126. Lin E, Kuo P-H, Liu Y-L, Yu YW-Y, Yang AC, Tsai S-J. A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Front Psychiatry. 2018;9:290.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sundaram L, Bhat RR, Viswanath V, Li X. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning. Hum Mutat. 2017;38:1217–24.

    Article  PubMed  Google Scholar 

  128. Plis SM, Hjelm DR, Salakhutdinov R, Allen EA, Bockholt HJ, Long JD, et al. Deep learning for neuroimaging: a validation study. Front Neurosci. 2014;8:229.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet. 2015;97:576–92.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bulik-Sullivan, Loh BK, Finucane P-R, Ripke HK, Yang S, Schizophrenia Working Group of the Psychiatric Genomics Consortium J, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Krapohl E, Patel H, Newhouse S, Curtis CJ, von Stumm S, Dale PS, et al. Multi-polygenic score approach to trait prediction. Mol Psychiatry. 2018;23:1368–74.

    Article  CAS  PubMed  Google Scholar 

  132. Barnett EJ, Biederman J, Doyle AE, Hess J, DiSalvo M, Faraone SV. Identifying pediatric mood disorders from transdiagnostic polygenic risk scores: a study of children and adolescents. J Clin Psychiatry. 2022;83:40635.

  133. Chen J, Schwarz E. BioMM: Biologically-informed Multi-stage Machine learning for identification of epigenetic fingerprints. arXiv:171200336. 2017. https://doi.org/10.48550/arXiv.1712.00336.

  134. Vu M-AT, Adalı T, Ba D, Buzsáki G, Carlson D, Heller K, et al. A shared vision for machine learning in neuroscience. J Neurosci. 2018;38:1601–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kang J, Rancati T, Lee S, Oh JH, Kerns SL, Scott JG, et al. Machine learning and radiogenomics: lessons learned and future directions. Front Oncol. 2018;8:228.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Shrager J, Tenenbaum JM. Rapid learning for precision oncology. Nat Rev Clin Oncol. 2014;11:109.

    Article  PubMed  Google Scholar 

  138. Doyle-Lindrud S. Watson will see you now: a supercomputer to help clinicians make informed treatment decisions. Clin J Oncol Nurs. 2015;19:31–2.

    Article  PubMed  Google Scholar 

  139. Wang S, Summers RM. Machine learning and radiology. Med Image Anal. 2012;16:933–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Neale B. Perspective on data sharing and open science in psychiatric genetics. Eur Neuropsychopharmacol. 2019;29:S778.

  141. Bell V. Open science in mental health research. Lancet Psychiatry. 2017;4:525–6.

    Article  PubMed  Google Scholar 

  142. Hardwicke TE, Mathur MB, MacDonald K, Nilsonne G, Banks GC, Kidwell MC, et al. Data availability, reusability, and analytic reproducibility: evaluating the impact of a mandatory open data policy at the journal Cognition. R Soc Open Sci. 2018;5:180448.

    Article  PubMed  PubMed Central  Google Scholar 

  143. National Research Council (US) Committee on Applied, Statistics T. The current state of data integration in science. USA: National Academies Press; 2010.

  144. Sullivan PF, Agrawal A, Bulik CM, Andreassen OA, Børglum AD, Breen G, et al. Psychiatric Genomics: An Update and an Agenda. Am J Psychiatry. 2018;175:15–27.

    Article  PubMed  Google Scholar 

  145. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45:D896–D901.

    Article  CAS  PubMed  Google Scholar 

  146. Shen Z, Spruit M. A systematic review of open source clinical software on GitHub for improving software reuse in smart healthcare. NATO Adv Sci Inst Ser E Appl Sci. 2019;9:150.

    Google Scholar 

  147. Guinney J, Saez-Rodriguez J. Alternative models for sharing confidential biomedical data. Nat Biotechnol. 2018;36:391–2.

    Article  CAS  PubMed  Google Scholar 

  148. Huang S, Chaudhary K, Garmire LX. More is better: recent progress in multi-omics data integration methods. Front Genet. 2017;8:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lapatas V, Stefanidakis M, Jimenez RC, Via A, Schneider MV. Data integration in biological research: an overview. J Biol Res. 2015;22:9.

    Google Scholar 

  150. Lam RW, Milev R, Rotzinger S, Andreazza AC, Blier P, Brenner C, et al. Discovering biomarkers for antidepressant response: protocol from the Canadian biomarker integration network in depression (CAN-BIND) and clinical characteristics of the first patient cohort. BMC Psychiatry. 2016;16:105.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artif Intell. 1997;97:245–71.

    Article  Google Scholar 

  152. Kolachalama VB, Garg PS. Machine learning and medical education. Npj Digit Med. 2018;1:54.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Hekler A, Utikal JS, Enk AH, Solass W, Schmitt M, Klode J, et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer Oxf Engl. 2019;118:91–6.

    Article  Google Scholar 

  154. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89–94.

    Article  CAS  PubMed  Google Scholar 

  155. Wang S, Manning C. Fast dropout training. In: Dasgupta S, McAllester D, editors. Proc. 30th International Conference on Machine Learning, vol. 28, PMLR: Atlanta, Georgia, USA; 2013. p. 118–26.

  156. Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation using deep ensembles. ArXiv. 2017. https://doi.org/10.48550/arXiv.1612.01474.

  157. Wang G, Li W, Aertsen M, Deprest J, Ourselin S, Vercauteren T. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing. 2019;338:34–45.

    Article  Google Scholar 

  158. Dolezal JM, Srisuwananukorn A, Karpeyev D, Ramesh S, Kochanny S, Cody B, et al. Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology. Nat Commun. 2022;13:6572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tandon N, Tandon R. Machine learning in psychiatry- standards and guidelines. Asian J Psychiatr. 2019;44:A1–A4.

    Article  PubMed  Google Scholar 

  160. Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. ArXiv. 2019. https://doi.org/10.48550/arXiv.1910.10045.

  161. Bollen KA, Jackman RW. Regression diagnostics: an expository treatment of outliers and influential cases. Socio Methods Res. 1985;13:510–42.

    Article  Google Scholar 

  162. Samiei M, Würfl T, Deleu T, Weiss M, Dutil F, Fevens T, et al. The TCGA meta-dataset clinical benchmark. ArXiv. 2019. https://doi.org/10.48550/arXiv.1910.08636.

  163. Feng J, Xu H, Mannor S, Yan S. Robust logistic regression and classification. In: Advances in neural information processing systems, vol. 27, Curran Associates, Inc.; 2014.

  164. Ying X. An overview of overfitting and its solutions. J Phys Confer Ser. 2019;1168:022022.

    Article  Google Scholar 

  165. Orrù G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev. 2012;36:1140–52.

    Article  PubMed  Google Scholar 

  166. Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning algorithm validation with a limited sample size. PLoS ONE. 2019;14:e0224365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ramteke RJ, Khachane M. Automatic medical image classification and abnormality detection using K- nearest neighbour. Int J Adv Comput Res. 2012;2:190–6.

    Google Scholar 

  168. Awoyemi JO, Adetunmbi AO, Oluwadare SA. Credit card fraud detection using machine learning techniques: a comparative analysis. 2017 Int. Confer. Comput. Netw. Inform. Lagos, Nigeria: ICCNI; 2017. p. 1–9.

  169. Delgadillo J, Lutz W. A development pathway towards precision mental health care. JAMA Psychiatry. 2020;77:889.

    Article  PubMed  Google Scholar 

  170. Lutz W, Schwartz B, Martín Gómez Penedo J, Boyle K, Deisenhofer A-K. Working towards the development and implementation of precision mental healthcare: an example. Adm Policy Ment Health. 2020;47:856–61.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Heckerman D A Bayesian Approach to Learning Causal Networks. ArXiv. 2015. https://doi.org/10.48550/arXiv.1302.4958.

  172. Madar IH, Sultan G, Tayubi IA, Hasan AN, Pahi B, Rai A, et al. Identification of marker genes in Alzheimer’s disease using a machine-learning model. Bioinformation. 2021;17:348–55.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Chen Y-C, Wheeler TA, Kochenderfer MJ. Learning discrete bayesian networks from continuous data. J Artif Intell Res. 2017;59:103–32.

    Article  Google Scholar 

  174. Cheng J, Liu H-P, Lin W-Y, Tsai F-J. Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer’s disease. Sci Rep. 2021;11:13704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dwyer K, Holte R. Decision Tree Instability and Active Learning. In: Kok JN, Koronacki J, de Mantaras RL, Matwin S, Mladenič D, Skowron A, editors. Mach. Learn. ECML 2007, Berlin, Heidelberg: Springer; 2007. p. 128–39.

  176. Breiman L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci. 2001;16:199–231.

    Article  Google Scholar 

  177. Ainscough BJ, Barnell EK, Ronning P, Campbell KM, Wagner AH, Fehniger TA, et al. A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data. Nat Genet. 2018;50:1735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sole X, Ramisa A, Torras C. Evaluation of random forests on large-scale classification problems using a Bag-of-Visual-Words representation.

  179. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York, NY: Springer; 2009.

  180. Vangay P, Hillmann BM, Knights D. Microbiome Learning Repo (ML Repo): a public repository of microbiome regression and classification tasks. GigaScience. 2019;8:giz042.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Zhang H, Nettleton D, Zhu Z. Regression-enhanced random forests. ArXiv. 2019. https://doi.org/10.48550/arXiv.1904.10416.

  182. Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag. 2012;29:82–97.

    Article  Google Scholar 

  183. Suk H-I, Shen D. Deep learning-based feature representation for AD/MCI classification. Med Image Comput Comput Assist Interv. 2013;16:583–90.

    PubMed  PubMed Central  Google Scholar 

  184. Telenti A, Lippert C, Chang P-C, DePristo M. Deep learning of genomic variation and regulatory network data. Hum Mol Genet. 2018;27:R63–R71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, et al. Residual Attention Network for Image Classification. arXiv:170406904. 2017. https://doi.org/10.48550/arXiv.1704.06904.

  186. Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag. 2018;13:55–75.

    Article  Google Scholar 

  187. Zrimec J, Börlin CS, Buric F, Muhammad AS, Chen R, Siewers V, et al. Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nat Commun. 2020;11:6141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Pandey M, Fernandez M, Gentile F, Isayev O, Tropsha A, Stern AC, et al. The transformational role of GPU computing and deep learning in drug discovery. Nat Mach Intell. 2022;4:211–21.

    Article  Google Scholar 

  189. Koppe G, Meyer-Lindenberg A, Durstewitz D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology. 2021;46:176–90.

    Article  PubMed  Google Scholar 

  190. Alwosheel A, van Cranenburgh S, Chorus CG. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. J Choice Model. 2018;28:167–82.

    Article  Google Scholar 

  191. Passafaro TL, Lopes FB, Dórea JRR, Craven M, Breen V, Hawken RJ, et al. Would large dataset sample size unveil the potential of deep neural networks for improved genome-enabled prediction of complex traits? The case for body weight in broilers. BMC Genomics. 2020;21:771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SJG is supported by grants from the U.S. National Institutes of Health (R01AG064955 and R21MH126494), the U.S. National Science Foundation, the Sidney R. Baer, Jr. Foundation, and NARSAD: The Brain & Behavior Research Foundation. GP is supported by a grant from the U.S. National Institutes of Health (R01HG011407) and an IBM Faculty Award. PL is supported a grant from the European Union’s Horizon 2020 research and innovation programme (634880), EDC-MixRisk, and Patient-Centered Outcome Research Institute (PCORI). JLH is supported by a grant from the U.S. National Institutes of Health (R21MH126494 and R01NS128535) and NARSAD: The Brain & Behavior Research Foundation. SVF is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 965381; NIMH grants U01AR076092-01A1, 1R21MH1264940, R01MH116037; 1R01NS128535 – 01; Oregon Health and Science University, Otsuka Pharmaceuticals, Noven Pharmaceuticals Incorporated, and Supernus Pharmaceutical Company.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

TPQ, JLH, SVF, DJM, KKN, ES, YZJ, and SJG conceived of the study or a section of the study. MSB, VSM, XM, SSME, MM, ES, A-CH, YJT, and AH performed the systematic review and data extraction. TPQ, JLH, JC, GP, ES, AS, IB, P-IL, YZJ, MEA, DJM contributed a section to the initial draft of the manuscript. VSM, MMB, AH, MM, SSME, XM, ES, YJT, MSB, EJB, YZJ, MEA, HC, JH, AS, P-IL, KKN, AML, IB, SVF, MJC, GP, DJM, and SJG critically revised the manuscript. DJM and SJG supervised the project. All authors approved the final version of the manuscript for submission.

Corresponding author

Correspondence to Stephen J. Glatt.

Ethics declarations

Competing interests

SVF in the past year, received income, potential income, travel expenses continuing education support and/or research support from Aardvark, Aardwolf, AIMH, Tris, Otsuka, Ironshore, Kanjo, Johnson & Johnson/Kenvue, KemPharm/Corium, Akili, Supernus, Atentiv, Noven, Sky Therapeutics, Axsome and Genomind. With his institution, he has US patent US20130217707 A1 for the use of sodium-hydrogen exchange inhibitors in the treatment of ADHD. He also receives royalties from books published by Guilford Press: Straight Talk about Your Child’s Mental Health, Oxford University Press: Schizophrenia: The Facts and Elsevier: ADHD: Non-Pharmacologic Interventions. He is Program Director of www.ADHDEvidence.org and www.ADHDinAdults.com.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinn, T.P., Hess, J.L., Marshe, V.S. et al. A primer on the use of machine learning to distil knowledge from data in biological psychiatry. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-023-02334-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02334-2

Search

Quick links