Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microglia shape AgRP neuron postnatal development via regulating perineuronal net plasticity

Abstract

The hypothalamus plays a crucial role in controlling metabolism and energy balance, with Agouti-related protein (AgRP) neurons and proopiomelanocortin (POMC) neurons being essential components of this process. The proper development of these neurons is important for metabolic regulation in later life. Microglia, the resident immune cells in the brain, have been shown to significantly influence neurodevelopment. However, their role in shaping the postnatal development of hypothalamic neural circuits remains underexplored. In this study, we investigated the dynamic changes of microglia in the hypothalamic arcuate nucleus (ARC) during lactation and their impact on the maturation of AgRP and POMC neurons. We demonstrated that microglial depletion during a critical period of ARC neuron maturation increases the number of AgRP neurons and fiber density, with less effect on POMC neurons. This depletion also resulted in increased neonatal feeding behavior. Mechanistically, microglia can engulf perineuronal net (PNN) components surrounding AgRP neurons both in vivo and ex vivo. The absence of microglia leads to increased PNN formation and enhanced leptin sensitivity in ARC. Our findings suggest that microglia participate in the postnatal development of AgRP neurons by regulating the plasticity of PNN formation. This study contributes to a better understanding of microglia’s role in shaping hypothalamic neural circuits during postnatal development and their impact on metabolism regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypothalamic microglia are highly dynamic during the postnatal period with close affinity to adjacent AgRP/NPY neurons.
Fig. 2: Microglia depletion at a critical time window increases NPY/AgRP neuron growth in ARC.
Fig. 3: RNA-Seq data from the hypothalamus after microglia depletion by PLX3397.
Fig. 4: Postnatal microglia depletion increases PNN formation mainly wrapping AgRP/NPY neurons.
Fig. 5: Postnatal microglia depletion increases leptin sensitivity in ARC.
Fig. 6: Postnatal microglia depletion leads to increased ingestive behavior in neonates.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the article and the Supplementary Material. Additional data related to this paper will be available upon request.

References

  1. Barsh GS, Schwartz MW. Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet. 2002;3:589–600.

    Article  CAS  PubMed  Google Scholar 

  2. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science. 2004;304:108–10.

    Article  CAS  PubMed  Google Scholar 

  3. van der Klaauw AA, Croizier S, Mendes de Oliveira E, Stadler LKJ, Park S, Kong Y, et al. Human semaphorin 3 variants link melanocortin circuit development and energy balance. Cell. 2019;176:729–42.e718.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell. 2014;156:495–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, Murakoshi H, et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun. 2016;7:12540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

    Article  CAS  PubMed  Google Scholar 

  8. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17:400–6.

    Article  CAS  PubMed  Google Scholar 

  9. Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain, Behav, Immun. 2012;26:607–16.

    Article  CAS  PubMed  Google Scholar 

  10. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153–62.

    Article  CAS  PubMed  Google Scholar 

  11. Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, et al. Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab. 2017;26:185–97.e183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao Y, Ottaway N, Schriever SC, Legutko B, García-Cáceres C, de la Fuente E, et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia. 2014;62:17–25.

    Article  PubMed  Google Scholar 

  13. Gao Y, Bielohuby M, Fleming T, Grabner GF, Foppen E, Bernhard W, et al. Dietary sugars, not lipids, drive hypothalamic inflammation. Mol Metab. 2017;6:897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosin JM, Vora SR, Kurrasch DM. Depletion of embryonic microglia using the CSF1R inhibitor PLX5622 has adverse sex-specific effects on mice, including accelerated weight gain, hyperactivity and anxiolytic-like behaviour. Brain Behav Immun. 2018;73:682–97.

    Article  CAS  PubMed  Google Scholar 

  15. Rosin JM, Marsters CM, Malik F, Far R, Adnani L, Schuurmans C, et al. Embryonic microglia interact with hypothalamic radial glia during development and upregulate the TAM receptors MERTK and AXL following an Insult. Cell Rep. 2021;34:108587.

    Article  CAS  PubMed  Google Scholar 

  16. Mirzadeh Z, Alonge KM, Cabrales E, Herranz-Pérez V, Scarlett JM, Brown JM, et al. Perineuronal net formation during the critical period for neuronal maturation in the hypothalamic arcuate nucleus. Nat Metab. 2019;1:212–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawasaki H, Kosugi I, Sakao-Suzuki M, Meguro S, Tsutsui Y, Iwashita T. Intracerebroventricular and intravascular injection of viral particles and fluorescent microbeads into the neonatal brain. J Vis Exp. 2016;24:54164.

  18. Hagemeyer N, Hanft KM, Akriditou MA, Unger N, Park ES, Stanley ER, et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 2017;134:441–58.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eyo UB, Miner SA, Weiner JA, Dailey ME. Developmental changes in microglial mobilization are independent of apoptosis in the neonatal mouse hippocampus. Brain Behav Immun. 2016;55:49–59.

    Article  CAS  PubMed  Google Scholar 

  20. Scott-Hewitt N, Perrucci F, Morini R, Erreni M, Mahoney M, Witkowska A, et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. Embo J. 2020;39:e105380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baquero AF, de Solis AJ, Lindsley SR, Kirigiti MA, Smith MS, Cowley MA, et al. Developmental switch of leptin signaling in arcuate nucleus neurons. J Neurosci. 2014;34:9982–94.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zimmer MR, Fonseca AHO, Iyilikci O, Pra RD, Dietrich MO. Functional ontogeny of hypothalamic agrp neurons in neonatal mouse behaviors. Cell. 2019;178:44–59.e47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu YJ, Spangenberg EE, Tang B, Holmes TC, Green KN, Xu X. Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex. J Neurosci. 2021;41:1274–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. VanRyzin JW, Yu SJ, Perez-Pouchoulen M, McCarthy MM. Temporary depletion of microglia during the early postnatal period induces lasting sex-dependent and sex-independent effects on behavior in rats. eNeuro. 2016;3:ENEURO.0297-16.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Romanov RA, Tretiakov EO, Kastriti ME, Zupancic M, Häring M, Korchynska S, et al. Molecular design of hypothalamus development. Nature. 2020;582:246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bouret SG, Draper SJ, Simerly RB. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci. 2004;24:2797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kohnke S, Buller S, Nuzzaci D, Ridley K, Lam B, Pivonkova H, et al. Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Rep. 2021;36:109362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248–51.

    Article  CAS  PubMed  Google Scholar 

  29. Carulli D, Pizzorusso T, Kwok JC, Putignano E, Poli A, Forostyak S, et al. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain. 2010;133:2331–47.

    Article  PubMed  Google Scholar 

  30. Balmer TS, Carels VM, Frisch JL, Nick TA. Modulation of perineuronal nets and parvalbumin with developmental song learning. J Neurosci. 2009;29:12878–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nowicka D, Soulsby S, Skangiel-Kramska J, Glazewski S. Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex. Eur J Neurosci. 2009;30:2053–63.

    Article  PubMed  Google Scholar 

  32. Crapser JD, Arreola MA, Tsourmas KI, Green KN. Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cell Mol Immunol. 2021;18:2472–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell. 2020;182:388–403.e315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pirbhoy PS, Rais M, Lovelace JW, Woodard W, Razak KA, Binder DK, et al. Acute pharmacological inhibition of matrix metalloproteinase-9 activity during development restores perineuronal net formation and normalizes auditory processing in Fmr1 KO mice. J Neurochem. 2020;155:538–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009;46:94–102.

    Article  CAS  PubMed  Google Scholar 

  36. Iijima N, Oohira A, Mori T, Kitabatake K, Kohsaka S. Core protein of chondroitin sulfate proteoglycan promotes neurite outgrowth from cultured neocortical neurons. J Neurochem. 1991;56:706–8.

    Article  CAS  PubMed  Google Scholar 

  37. Favuzzi E, Huang S, Saldi GA, Binan L, Ibrahim LA, Fernández-Otero M, et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell. 2021;184:4048–63.e4032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gorski JN, Dunn-Meynell AA, Hartman TG, Levin BE. Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2006;291:R768–78.

    Article  CAS  PubMed  Google Scholar 

  39. Xavier S, Soch A, Younesi S, Malik SA, Spencer SJ, Sominsky L. Maternal diet before and during pregnancy modulates microglial activation and neurogenesis in the postpartum rat brain. Brain Behav Immun. 2021;98:185–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant no.81873654 to YG, 82201579 to YP).

Author information

Authors and Affiliations

Authors

Contributions

JS and YG designed the experiments. JS, XW, and RS performed the experiments and analyzed the data. YW and XX contributed to the behavior experiment and animal caring. YP contributed to the data analysis. YG supervised the work. JS, XW, RS and YG wrote the manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Yuanqing Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, X., Sun, R. et al. Microglia shape AgRP neuron postnatal development via regulating perineuronal net plasticity. Mol Psychiatry (2023). https://doi.org/10.1038/s41380-023-02326-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02326-2

Search

Quick links