Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association study of traumatic brain injury in U.S. military veterans enrolled in the VA million veteran program

Subjects

Abstract

Large-scale genetic studies of traumatic brain injury (TBI) are lacking; thus, our understanding of the influence of genetic factors on TBI risk and recovery is incomplete. This study aimed to conduct a genome-wide association study (GWAS) of TBI in VA Million Veteran Program (MVP) enrollees. Participants included a multi-ancestry cohort (European, African, and Hispanic ancestries; N = 304,485; 111,494 TBI cases, 192,991 controls). TBI was assessed using MVP survey data and International Classification of Diseases (ICD) codes from the Veterans Health Administration’s electronic health record. GWAS was performed using logistic regression in PLINK, and meta-analyzed in METAL. FUMA was used for post-GWAS analysis. Genomic structural equation modeling (gSEM) was conducted to investigate underlying genetic associations with TBI, and bivariate MiXeR was used to estimate phenotype specific and shared polygenicity. SNP-based heritability was 0.060 (SE = 0.004, p = 7.83×10-66). GWAS analysis identified 15 genome-wide significant (GWS) loci at p < 5×10-8. Gene-based analyses revealed 14 gene-wide significant genes; top genes included NCAM1, APOE, FTO, and FOXP2. Gene tissue expression analysis identified the brain as significantly enriched, particularly in the frontal cortex, anterior cingulate cortex, and nucleus accumbens. Genetic correlations with TBI were significant for risk-taking behaviors and psychiatric disorders, but generally not significant for the neurocognitive variables investigated. gSEM analysis revealed stronger associations with risk-taking traits than with psychiatric traits. Finally, the genetic architecture of TBI was similar to polygenic psychiatric disorders. Neurodegenerative disorders including Alzheimer’s and Parkinson’s disease showed much less polygenicity, however, the proportion of shared variance with TBI was high. This first well-powered GWAS of TBI identified 15 loci including genes relevant to TBI biology, and showed that TBI is a heritable trait with comparable genetic architecture and high genetic correlation with psychiatric traits. Our findings set the stage for future TBI GWASs that focus on injury severity and diversity and chronicity of symptom sequelae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plot of TBI for the multi-ancestry cohort.
Fig. 2: Gene tissue expression in the multi-ancestry cohort.
Fig. 3: Genetic correlation between TBI and other phenotypes.
Fig. 4: Genomic structural equation modeling (gSEM) results.
Fig. 5: Multiple regression results.

Similar content being viewed by others

Data availability

The data underlying this publication are accessible to researchers with Million Veteran Program (MVP) data access. MVP is currently only accessible to researchers who have a funded MVP project, either through a VA Merit Award or a VA Career Development Award. See https://www.research.va.gov/funding/Guidance-MVP-Data-Access-Merit-Award.pdf for more details. Summary statistics will be made publicly available on dbGAP.

References

  1. Helmick KM, Spells CA, Malik SZ, Davies CA, Marion DW, Hinds SR. Traumatic brain injury in the US military: Epidemiology and key clinical and research programs. Brain Imaging Behav. 2015;9:358–66.

    Article  PubMed  Google Scholar 

  2. DoD Numbers for Traumatic Brain Injury Worldwide - Totals (Defense Health Agency) (2021).

  3. Karr JE, Areshenkoff CN, Garcia-Barrera MA. The neuropsychological outcomes of concussion: a systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology 2014;28:321–36.

    Article  PubMed  Google Scholar 

  4. McCrea M, Guskiewicz K, Doncevic S, Helmick K, Kennedy J, Boyd C, et al. Day of injury cognitive performance on the Military Acute Concussion Evaluation (MACE) by US military service members in OEF/OIF. Mil Med. 2014;179:990–7.

    Article  PubMed  Google Scholar 

  5. Nelson LD, Temkin NR, Dikmen S, Barber J, Giacino JT, Yuh E, et al. Recovery after mild traumatic brain injury in patients presenting to US level I trauma centers: A transforming research and clinical knowledge in traumatic brain injury (TRACK-TBI) study. JAMA Neurol. 2019;76:1049–59.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chapman JC, Diaz‐Arrastia R. Military traumatic brain injury: A review. Alzheimer’s Dement. 2014;10:S97–104.

    Article  Google Scholar 

  7. Schwab K, Terrio HP, Brenner LA, Pazdan RM, McMillan HP, MacDonald M, et al. Epidemiology and prognosis of mild traumatic brain injury in returning soldiers: A cohort study. Neurology 2017;88:1571–9.

    Article  PubMed  Google Scholar 

  8. Perry DC, Sturm VE, Peterson MJ, Pieper CF, Bullock T, Boeve BF, et al. Traumatic brain injury is associated with subsequent neurologic and psychiatric disease: A meta-analysis. J Neurosurg. 2016;124:511–26.

    Article  PubMed  Google Scholar 

  9. Stein MB, Ursano RJ, Campbell-Sills L, Colpe LJ, Fullerton CS, Heeringa SG, et al. Prognostic indicators of persistent post-concussive symptoms after deployment-related mild traumatic brain injury: A prospective longitudinal study in US Army soldiers. J Neurotrauma. 2016;33:2125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stein MB, Jain S, Giacino JT, Levin H, Dikmen S, Nelson LD, et al. Risk of posttraumatic stress disorder and major depression in civilian patients after mild traumatic brain injury: A TRACK-TBI study. JAMA Psychiatry. 2019;76:249–58.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Barnes DE, Byers AL, Gardner RC, Seal KH, Boscardin WJ, Yaffe K. Association of mild traumatic brain injury with and without loss of consciousness with dementia in US military veterans. JAMA Neurol. 2018;75:1055–61.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brickell TA, Lange RT, French LM. Health-related quality of life within the first 5 years following military-related concurrent mild traumatic brain injury and polytrauma. Mil Med. 2014;179:827–38.

    Article  PubMed  Google Scholar 

  13. Sakamoto MS, Delano-Wood L, Schiehser DM, Merritt VC Predicting veteran health-related quality of life following mild traumatic brain injury. Rehabilitation Psychology. 2021; https://doi.org/10.1037/rep0000392.

  14. Agtarap SD, Campbell-Sills L, Jain S, Sun X, Dikmen S, Levin H, et al. Satisfaction with life after mild traumatic brain injury: A TRACK-TBI study. J Neurotrauma. 2021;38:546–54.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pietrzak RH, Johnson DC, Goldstein MB, Malley JC, Southwick SM. Posttraumatic stress disorder mediates the relationship between mild traumatic brain injury and health and psychosocial functioning in veterans of Operations Enduring Freedom and Iraqi Freedom. J Nerv Ment Dis. 2009;197:748–53.

    Article  PubMed  Google Scholar 

  16. MacDonald CL, Barber J, Jordan M, Johnson AM, Dikmen S, Fann JR, et al. Early clinical predictors of 5-year outcome after concussive blast traumatic brain injury. JAMA Neurol. 2017;74:821–9.

    Article  Google Scholar 

  17. Taylor BC, Hagel EM, Carlson KF, Cifu DX, Cutting A, Bidelspach DE, et al. Prevalence and costs of co-occurring traumatic brain injury with and without psychiatric disturbance and pain among Afghanistan and Iraq War Veteran VA users. Med Care. 2012;50:342–6.

    Article  PubMed  Google Scholar 

  18. McAllister TW. Genetic factors modulating outcome after neurotrauma. PMR 2010;2:S241–52.

    Google Scholar 

  19. Jordan BD. Genetic influences on outcome following traumatic brain injury. Neurochem Res. 2007;32:905–15.

    Article  CAS  PubMed  Google Scholar 

  20. Weaver SM, Chau A, Portelli JN, Grafman J. Genetic polymorphisms influence recovery from traumatic brain injury. Neuroscientist. 2012;18:631–44.

    Article  CAS  PubMed  Google Scholar 

  21. Dardiotis E, Fountas KN, Dardioti M, Xiromerisiou G, Kapsalaki E, Tasiou A, et al. Genetic association studies in patients with traumatic brain injury. Neurosurg Focus. 2010;28:E9.

    Article  PubMed  Google Scholar 

  22. Zeiler FA, McFadyen C, Newcombe VF, Synnot A, Donoghue EL, Ripatti S, et al. Genetic influences on patient-oriented outcomes in traumatic brain injury: A living systematic review of non-apolipoprotein E single-nucleotide polymorphisms. J Neurotrauma. 2021;38:1107–23.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Panenka WJ, Gardner AJ, Dretsch MN, Crynen GC, Crawford FC, Iverson GL. Systematic review of genetic risk factors for sustaining a mild traumatic brain injury. J Neurotrauma. 2017;34:2093–9.

    Article  PubMed  Google Scholar 

  24. Lawrence DW, Comper P, Hutchison MG, Sharma B. The role of apolipoprotein E episilon (ɛ)-4 allele on outcome following traumatic brain injury: A systematic review. Brain Inj. 2015;29:1018–31.

    Article  PubMed  Google Scholar 

  25. Sun X-C, Jiang Y. Genetic susceptibility to traumatic brain injury and apolipoprotein E gene. Chin J Traumatol. 2008;11:247–52.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou W, Xu D, Peng X, Zhang Q, Jia J, Crutcher KA. Meta-analysis of APOE 4 allele and outcome after traumatic brain injury. J Neurotrauma. 2008;25:279–90.

    Article  PubMed  Google Scholar 

  27. Zeng S, Jiang J-X, Xu M-H, Xu L-S, Shen G-J, Zhang A-Q, et al. Prognostic value of apolipoprotein E epsilon4 allele in patients with traumatic brain injury: A meta-analysis and meta-regression. Genet Test Mol Biomark. 2014;18:202–10.

    Article  CAS  Google Scholar 

  28. McFadyen CA, Zeiler FA, Newcombe V, Synnot A, Steyerberg E, Gruen RL, et al. Apolipoprotein E4 polymorphism and outcomes from traumatic brain injury: A living systematic review and meta-analysis. J Neurotrauma. 2021;38:1124–36.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Duncan LE, Ostacher M, Ballon J. How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete. Neuropsychopharmacology 2019;44:1518–23.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wray NR, Lee SH, Mehta D, Vinkhuyzen AA, Dudbridge F, Middeldorp CM. Research review: Polygenic methods and their application to psychiatric traits. J Child Psychol Psychiatry. 2014;55:1068–87.

    Article  PubMed  Google Scholar 

  31. Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, Breeling J, et al. Million Veteran Program: A mega-biobank to study genetic influences on health and disease. J Clin Epidemiol. 2016;70:214–23.

    Article  PubMed  Google Scholar 

  32. Schwab KA, Ivins B, Cramer G, Johnson W, Sluss-Tiller M, Kiley K, et al. Screening for traumatic brain injury in troops returning from deployment in Afghanistan and Iraq: initial investigation of the usefulness of a short screening tool for traumatic brain injury. J Head Trauma Rehabilitation. 2007;22:377–89.

    Article  Google Scholar 

  33. U.S. Department of Defense. Traumatic Brain Injury (TBI): DoD Standard Surveillance Case Definition for TBI Adapted for AFHSD Use. U.S. Department of Defense.

  34. Hunter-Zinck H, Shi Y, Li M, Gorman BR, Ji S-G, Sun N, et al. Genotyping array design and data quality control in the Million Veteran Program. Am J Hum Genet. 2020;106:535–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015;526:68–74.

    Article  Google Scholar 

  36. Loh P-R, Danecek P, Palamara PF, Fuchsberger C, Reshef YA, Finucane HK, et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016;48:1443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fang H, Hui Q, Lynch J, Honerlaw J, Assimes TL, Huang J, et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am J Hum Genet. 2019;105:763–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust relationship inference in genome-wide association studies. Bioinformatics 2010;26:2867–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abraham G, Qiu Y, Inouye M. FlashPCA2: Principal component analysis of Biobank-scale genotype datasets. Bioinformatics 2017;33:2776–8.

    Article  CAS  PubMed  Google Scholar 

  40. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JL. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4:7.

  41. Willer CJ, Li Y, Abecasis GR. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010;26:2190–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 2010;26:2336–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Watanabe K, Taskesen E, Van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011;88:294–305.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizofrenia Working Group of the Psychiatric Genomics Consortium. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Holland D, Frei O, Desikan R, Fan C-C, Shadrin AA, Smeland OB, et al. Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model. PLoS Genet. 2020;16:e1008612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frei O, Holland D, Smeland OB, Shadrin AA, Fan C-C, Maeland S, et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat Commun. 2019;10:2417.

    Article  PubMed  PubMed Central  Google Scholar 

  48. R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/.

  49. Grotzinger AD, Rhemtulla M, de Vlaming R, Ritchie SJ, Mallard TT, Hill WD, et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat Hum Behav. 2019;3:513–25.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Watanabe Kea. A global view of genetic architecture in human complex traits. [under preparation].

  51. Seripa D, D’Onofrio G, Panza F, Cascavilla L, Masullo C, Pilotto A. The genetics of the human APOE polymorphism. Rejuvenation Res. 2011;14:491–500.

    Article  CAS  PubMed  Google Scholar 

  52. Broman KW, Matsumoto N, Giglio S, Martin CL, Roseberry JA, Zuffardi O, et al. Common long human inversion polymorphism on chromosome 8p. Lecture Notes-Monograph Series. 2003;40:237–45.

  53. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: A centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 2017;33:272–9.

    Article  CAS  PubMed  Google Scholar 

  54. Schmid RS, Maness PF Cell recognition molecules and disorders of neurodevelopment. International Handbook on Brain and Behaviour in Human Development. Kluwer Academic Publishers; 2001:199-218.

  55. Brennaman LH, Maness PF NCAM in neuropsychiatric and neurodegenerative disorders. vol 663. Structure and Function of the Neural Cell Adhesion Molecule NCAM: Advances in Experimental Medicine and Biology Springer; 2010:299-317.

  56. Vukojevic V, Mastrandreas P, Arnold A, Peter F, Kolassa I-T, Wilker S, et al. Evolutionary conserved role of neural cell adhesion molecule-1 in memory. Transl Psychiatry. 2020;10:217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mahley RW, Huang Y. Apolipoprotein e sets the stage: Response to injury triggers neuropathology. Neuron 2012;76:871–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci. 2006;103:5644–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: A meta-analysis. JAMA 1997;278:1349–56.

    Article  CAS  PubMed  Google Scholar 

  60. Horsburgh K, McCarron MO, White F, Nicoll JA. The role of apolipoprotein E in Alzheimer’s disease, acute brain injury and cerebrovascular disease: Evidence of common mechanisms and utility of animal models. Neurobiol Aging. 2000;21:245–55.

    Article  CAS  PubMed  Google Scholar 

  61. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011;10:241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reinvang I, Espeseth T, Westlye LT. APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer’s disease. Neurosci Biobehav Rev. 2013;37:1322–35.

    Article  CAS  PubMed  Google Scholar 

  63. Van Giau V, Bagyinszky E, An SSA, Kim SY. Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatr Dis Treat. 2015;11:1723–37.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wisdom NM, Callahan JL, Hawkins KA. The effects of apolipoprotein E on non-impaired cognitive functioning: A meta-analysis. Neurobiol Aging. 2011;32:63–74.

    Article  CAS  PubMed  Google Scholar 

  65. McAllister TW, Flashman LA, Harker Rhodes C, Tyler AL, Moore JH, Saykin AJ, et al. Single nucleotide polymorphisms in ANKK1 and the dopamine D2 receptor gene affect cognitive outcome shortly after traumatic brain injury: A replication and extension study. Brain Inj. 2008;22:705–14.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Merritt VC, Clark AL, Sorg SF, Evangelista ND, Werhane M, Bondi MW, et al. Apolipoprotein E ε4 genotype is associated with elevated psychiatric distress in veterans with a history of mild to moderate traumatic brain injury. J Neurotrauma. 2018;35:2272–82.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Merritt VC, Clark AL, Sorg SF, Evangelista ND, Werhane ML, Bondi MW, et al. Apolipoprotein E (APOE) ε4 genotype is associated with reduced neuropsychological performance in military veterans with a history of mild traumatic brain injury. J Clin Exp Neuropsychol. 2018;40:1050–61.

    Article  PubMed  Google Scholar 

  68. Merritt VC, Lange RT, Lippa SM, Brickell TA, Soltis AR, Dalgard CL, et al. Apolipoprotein e (APOE) ε4 genotype influences memory performance following remote traumatic brain injury in US military service members and veterans. Brain cognition. 2021;154:105790.

    Article  PubMed  Google Scholar 

  69. Zhao X, Yang Y, Sun B-F, Zhao Y-L, Yang Y-G. FTO and obesity: Mechanisms of association. Curr Diabetes Rep. 2014;14:1–9.

    Article  Google Scholar 

  70. McCarthy MI. Genomics, type 2 diabetes, and obesity. N. Engl J Med. 2010;363:2339–50.

    Article  CAS  PubMed  Google Scholar 

  71. Reitz C, Tosto G, Mayeux R, Luchsinger JA, Group N-LNFS, Initiative tAsDN. Genetic variants in the Fat and Obesity Associated (FTO) gene and risk of Alzheimer’s disease. PloS One. 2012;7:e50354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li H, Ren Y, Mao K, Hua F, Yang Y, Wei N, et al. FTO is involved in Alzheimer’s disease by targeting TSC1-mTOR-Tau signaling. Biochemical Biophysical Res Commun. 2018;498:234–9.

    Article  CAS  Google Scholar 

  73. Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. Wiley Interdiscip Rev: Developmental Biol. 2020;9:e375.

    Article  CAS  Google Scholar 

  74. Den Hoed J, Devaraju K, Fisher SE. Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep. 2021;22:e52803.

    Article  Google Scholar 

  75. Stein MB, Levey DF, Cheng Z, Wendt FR, Harrington K, Pathak GA, et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. Nat Genet. 2021;53:174–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Linnér RK, Biroli P, Kong E, Meddens SFW, Wedow R, Fontana MA, et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat Genet. 2019;51:245–57.

    Article  PubMed Central  Google Scholar 

  77. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4:215–22.

    Article  CAS  PubMed  Google Scholar 

  78. Stevens FL, Hurley RA, Taber KH. Anterior cingulate cortex: unique role in cognition and emotion. J Neuropsychiatry Clin Neurosci. 2011;23:121–5.

    Article  PubMed  Google Scholar 

  79. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51:414–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gupte R, Brooks W, Vukas R, Pierce J, Harris J. Sex differences in traumatic brain injury: what we know and what we should know. J Neurotrauma. 2019;36:3063–91.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kim LH, Quon JL, Sun FW, Wortman KM, Adamson MM, Harris OA. Traumatic brain injury among female veterans: A review of sex differences in military neurosurgery. Neurosurgical Focus. 2018;45:E16.

    Article  PubMed  Google Scholar 

  82. Merritt VC, Padgett CR, Jak AJ. A systematic review of sex differences in concussion outcome: What do we know? Clin Neuropsychologist. 2019;33:1016–43.

    Article  Google Scholar 

  83. Mollayeva T, Mollayeva S, Colantonio A. Traumatic brain injury: sex, gender and intersecting vulnerabilities. Nat Rev Neurol. 2018;14:711–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Veterans who volunteered to participate in the Million Veteran Program. This research is based on data from the Million Veteran Program (Project MVP026), Office of Research and Development, Veterans Health Administration. This publication does not represent the views of the Department of Veteran Affairs or the United States Government.

Funding

This work was supported by a Career Development Award awarded to Dr. Merritt from the VA Clinical Science Research & Development Service (IK2 CX001952).

Author information

Authors and Affiliations

Authors

Contributions

Overall study coordination: VCM, CMN. Study concept and design: VCM, CMN, AXM, LDW. Data curation: CCC. Phenotype analysis: CCC (lead), VCM, LDW. Statistical analysis: AXM (lead), MG. Data interpretation: AXM, MG, CMN, MBS, MSP, RLH, MWL, VCM. Writing: VCM (lead), AXM, CMN. All authors provided edits, feedback, and approved the final version of the paper for submission.

Corresponding author

Correspondence to Victoria C. Merritt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merritt, V.C., Maihofer, A.X., Gasperi, M. et al. Genome-wide association study of traumatic brain injury in U.S. military veterans enrolled in the VA million veteran program. Mol Psychiatry (2023). https://doi.org/10.1038/s41380-023-02304-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02304-8

Search

Quick links