Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Psychiatric risk gene Transcription Factor 4 (TCF4) regulates the density and connectivity of distinct inhibitory interneuron subtypes

Abstract

Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor that is implicated in a variety of psychiatric disorders including autism spectrum disorder (ASD), major depression, and schizophrenia. Autosomal dominant mutations in TCF4 are causal for a specific ASD called Pitt-Hopkins Syndrome (PTHS). However, our understanding of etiological and pathophysiological mechanisms downstream of TCF4 mutations is incomplete. Single cell sequencing indicates TCF4 is highly expressed in GABAergic interneurons (INs). Here, we performed cell-type specific expression analysis (CSEA) and cellular deconvolution (CD) on bulk RNA sequencing data from 5 different PTHS mouse models. Using CSEA we observed differentially expressed genes (DEGs) were enriched in parvalbumin expressing (PV+) INs and CD predicted a reduction in the PV+ INs population. Therefore, we investigated the role of TCF4 in regulating the development and function of INs in the Tcf4+/tr mouse model of PTHS. In Tcf4+/tr mice, immunohistochemical (IHC) analysis of subtype-specific IN markers and reporter mice identified reductions in PV+, vasoactive intestinal peptide (VIP+), and cortistatin (CST+) expressing INs in the cortex and cholinergic (ChAT+) INs in the striatum, with the somatostatin (SST+) IN population being spared. The reduction of these specific IN populations led to cell-type specific alterations in the balance of excitatory and inhibitory inputs onto PV+ and VIP+ INs and excitatory pyramidal neurons within the cortex. These data indicate TCF4 is a critical regulator of the development of specific subsets of INs and highlight the inhibitory network as an important source of pathophysiology in PTHS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell type-specific expression analyses and cellular deconvolution of bulk RNA-seq data predicts a reduction in PV + INs in Tcf4+/mut mice.
Fig. 2: Dysregulation of IN specific gene expression in the PTHS mouse model.
Fig. 3: Reduced density of specific subclasses of INs in the PTHS mouse cortex.
Fig. 4: Reduced density of specific subclasses of INs in subcortical brain regions.
Fig. 5: Intrinsic and synaptic characteristics of PV + INs in the PTHS mouse model.
Fig. 6: Intrinsic and synaptic characteristics of VIP + INs in the medial prefrontal cortex of the PTHS mouse model.
Fig. 7: Excitatory and inhibitory synaptic characteristics of medial prefrontal pyramidal neurons in the PTHS mouse model.

Similar content being viewed by others

Data availability

Code for RNA-seq analyses in this study are available online at https://github.com/LieberInstitute/PTHS_interneurons. No new genomic sequencing experiments were performed in this study.

References

  1. Teixeira JR, Szeto RA, Carvalho VMA, Muotri AR, Papes F. Transcription factor 4 and its association with psychiatric disorders. Transl Psychiatry. 2021;11:19.

    PubMed Central  PubMed  Google Scholar 

  2. Chen H-Y, Bohlen JF, Maher BJ. Molecular and cellular function of transcription Factor 4 in Pitt-Hopkins syndrome. Dev Neurosci. 2021;43:159–67.

    CAS  PubMed  Google Scholar 

  3. de Winter CF, Baas M, Bijlsma EK, van Heukelingen J, Routledge S, Hennekam RCM. Phenotype and natural history in 101 individuals with Pitt-Hopkins syndrome through an internet questionnaire system. Orphanet J Rare Dis. 2016;11:37.

    PubMed Central  PubMed  Google Scholar 

  4. Zollino M, Zweier C, Van Balkom ID, Sweetser DA, Alaimo J, Bijlsma EK, et al. Diagnosis and management in Pitt-Hopkins syndrome: first international consensus statement. Clin Genet. 2019;95:462–78.

    CAS  PubMed  Google Scholar 

  5. Rannals MD, Hamersky GR, Page SC, Campbell MN, Briley A, Gallo RA, et al. Psychiatric risk gene transcription factor 4 regulates intrinsic excitability of prefrontal neurons via repression of scn10a and KCNQ1. Neuron. 2016;90:43–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Phan BN, Bohlen JF, Davis BA, Ye Z, Chen H-Y, Mayfield B, et al. A myelin-related transcriptomic profile is shared by Pitt-Hopkins syndrome models and human autism spectrum disorder. Nat Neurosci. 2020;23:375–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Kim H, Berens NC, Ochandarena NE, Philpot BD. Region and cell type distribution of TCF4 in the postnatal mouse brain. Front Neuroanat. 2020;14:42.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Ling JP, Wilks C, Charles R, Leavey PJ, Ghosh D, Jiang L, et al. ASCOT identifies key regulators of neuronal subtype-specific splicing. Nat Commun. 2020;11:137.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci. 2016;19:335–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Roux L, Buzsáki G. Tasks for inhibitory interneurons in intact brain circuits. Neuropharmacology. 2015;88:10–23.

    CAS  PubMed  Google Scholar 

  11. Marín O. Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci. 2012;13:107–20.

    PubMed  Google Scholar 

  12. Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron. 2015;87:684–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Scharfman HE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep. 2007;7:348–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–13.

    CAS  PubMed  Google Scholar 

  15. Fishell G, Kepecs A. Interneuron types as attractors and controllers. Annu Rev Neurosci. 2020;43:1–30.

    CAS  PubMed  Google Scholar 

  16. Tremblay R, Lee S, Rudy B. Gabaergic interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91:260–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Sultan KT, Shi S-H Generation of diverse cortical inhibitory interneurons. Wiley Interdiscip Rev Dev Biol. 2018; 7. https://doi.org/10.1002/wdev.306.

  18. de Lecea L, del Rio JA, Criado JR, Alcántara S, Morales M, Danielson PE, et al. Cortistatin is expressed in a distinct subset of cortical interneurons. J Neurosci. 1997;17:5868–80.

    PubMed Central  PubMed  Google Scholar 

  19. Hébert JM, Fishell G. The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci. 2008;9:678–85.

    PubMed Central  PubMed  Google Scholar 

  20. Thompson CL, Ng L, Menon V, Martinez S, Lee C-K, Glattfelder K, et al. A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron. 2014;83:309–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Yao Z, van Velthoven CTJ, Nguyen TN, Goldy J, Sedeno-Cortes AE, Baftizadeh F, et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell. 2021;184:3222–3241.e26.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Koopmans F, van Nierop P, Andres-Alonso M, Byrnes A, Cijsouw T, Coba MP, et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron. 2019;103:217–234.e4.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Bertrand N, Castro DS, Guillemot F. Proneural genes and the specification of neural cell types. Nat Rev Neurosci. 2002;3:517–30.

    CAS  PubMed  Google Scholar 

  24. Moen MJ, Adams HHH, Brandsma JH, Dekkers DHW, Akinci U, Karkampouna S, et al. An interaction network of mental disorder proteins in neural stem cells. Transl Psychiatry. 2017;7:e1082.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Wittmann M-T, Katada S, Sock E, Kirchner P, Ekici AB, Wegner M et al. scRNA sequencing uncovers a TCF4-dependent transcription factor network regulating commissure development in mouse. Development. 2021; 148. https://doi.org/10.1242/dev.196022.

  26. Wang Y, Liu L, Lin M.Psychiatric risk gene transcription factor 4 preferentially regulates cortical interneuron neurogenesis during early brain development.J Biomed Res. 2022;36:242–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell. 2010;140:744–52.

    CAS  PubMed  Google Scholar 

  28. Fedorova E, Zink D. Nuclear architecture and gene regulation. Biochim Biophys Acta. 2008;1783:2174–84.

    CAS  PubMed  Google Scholar 

  29. Xia H, Jahr FM, Kim N-K, Xie L, Shabalin AA, Bryois J. Building a schizophrenia genetic network: transcription factor 4 regulates genes involved in neuronal development and schizophrenia risk. Hum Mol Genet. 2018;27:3246–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Google Scholar 

  31. Forrest MP, Hill MJ, Kavanagh DH, Tansey KE, Waite AJ, Blake DJ. The psychiatric risk gene transcription factor 4 (TCF4) regulates neurodevelopmental pathways associated with schizophrenia, autism, and intellectual disability. Schizophr Bull. 2018;44:1100–10.

    PubMed  Google Scholar 

  32. Herring CA, Simmons RK, Freytag S, Poppe D, Moffet JJD, Pflueger J, et al. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell. 2022;185:4428–4447.e28.

    CAS  PubMed  Google Scholar 

  33. Wedel M, Fröb F, Elsesser O, Wittmann M-T, Lie DC, Reis A, et al. Transcription factor Tcf4 is the preferred heterodimerization partner for Olig2 in oligodendrocytes and required for differentiation. Nucleic Acids Res. 2020;48:4839–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Sepp M, Vihma H, Nurm K, Urb M, Page SC, Roots K, et al. The intellectual disability and schizophrenia associated transcription factor TCF4 is regulated by neuronal activity and protein kinase A. J Neurosci. 2017;37:10516–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Nurm K, Sepp M, Castany-Pladevall C, Creus-Muncunill J, Tuvikene J, Sirp A et al. Isoform-specific reduction of the basic helix-loop-helix transcription factor TCF4 Levels in Huntington’s Disease. eNeuro. 2021; 8. https://doi.org/10.1523/ENEURO.0197-21.2021.

  36. Fode C, Ma Q, Casarosa S, Ang SL, Anderson DJ, Guillemot F. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 2000;14:67–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Parras CM, Schuurmans C, Scardigli R, Kim J, Anderson DJ, Guillemot F. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev. 2002;16:324–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Marin O, Anderson SA, Rubenstein JL. Origin and molecular specification of striatal interneurons. J Neurosci. 2000;20:6063–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Allaway KC, Machold R. Developmental specification of forebrain cholinergic neurons. Dev Biol. 2017;421:1–7.

    CAS  PubMed  Google Scholar 

  40. Tang K, Rubenstein JLR, Tsai SY, Tsai M-J. COUP-TFII controls amygdala patterning by regulating neuropilin expression. Development. 2012;139:1630–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Bandler RC, Mayer C. Deciphering inhibitory neuron development: the paths to diversity. Curr Opin Neurobiol. 2023;79:102691.

    CAS  PubMed  Google Scholar 

  42. Gupta A, Wang Y, Markram H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science. 2000;287:273–8.

    CAS  PubMed  Google Scholar 

  43. Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS, et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science. 2015;350:aac9462.

    PubMed Central  PubMed  Google Scholar 

  44. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci. 2013;16:1068–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci. 2013;16:1662–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Pi H-J, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature. 2013;503:521–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Campagnola L, Seeman SC, Chartrand T, Kim L, Hoggarth A, Gamlin C, et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science. 2022;375:eabj5861.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Ferrante M, Tahvildari B, Duque A, Hadzipasic M, Salkoff D, Zagha EW, et al. Distinct functional groups emerge from the intrinsic properties of molecularly identified entorhinal interneurons and principal cells. Cereb Cortex. 2017;27:3186–207.

    PubMed  Google Scholar 

  49. Davis BA, Chen H-Y, Ye Z, Ostlund I, Tippani M, Das D, et al. TCF4 mutations disrupt synaptic function through dysregulation of RIMBP2 in patient-derived cortical neurons. Biol Psychiatry. 2023. https://doi.org/10.1016/j.biopsych.2023.07.021.

  50. Papes F, Camargo AP, de Souza JS, Carvalho VMA, Szeto RA, LaMontagne E, et al. Transcription Factor 4 loss-of-function is associated with deficits in progenitor proliferation and cortical neuron content. Nat Commun. 2022;13:2387.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Cleary CM, James S, Maher BJ, Mulkey DK. Disordered breathing in a Pitt-Hopkins syndrome model involves Phox2b-expressing parafacial neurons and aberrant Nav1.8 expression. Nat Commun. 2021;12:5962.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Li H, Zhu Y, Morozov YM, Chen X, Page SC, Rannals MD, et al. Disruption of TCF4 regulatory networks leads to abnormal cortical development and mental disabilities. Mol Psychiatry. 2019;24:1235–46.

    CAS  PubMed  Google Scholar 

  53. Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.

    CAS  PubMed  Google Scholar 

  54. Anderson S, Mione M, Yun K, Rubenstein JL. Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb Cortex. 1999;9:646–54.

    CAS  PubMed  Google Scholar 

  55. Wamsley B, Fishell G. Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat Rev Neurosci. 2017;18:299–309.

    CAS  PubMed  Google Scholar 

  56. Southwell DG, Paredes MF, Galvao RP, Jones DL, Froemke RC, Sebe JY, et al. Intrinsically determined cell death of developing cortical interneurons. Nature. 2012;491:109–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Zhang Y, Cai Z, Hu G, Hu S, Wang Y, Li N, et al. Transcription factor 4 controls positioning of cortical projection neurons through regulation of cell adhesion. Mol Psychiatry. 2021;26:6562–77.

    CAS  PubMed  Google Scholar 

  58. Braun K, Häberle BM, Wittmann M-T, Lie DC. Enriched environment ameliorates adult hippocampal neurogenesis deficits in Tcf4 haploinsufficient mice. BMC Neurosci. 2020;21:50.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Mesman S, Bakker R, Smidt MP. Tcf4 is required for correct brain development during embryogenesis. Mol Cell Neurosci. 2020;106:103502.

    CAS  PubMed  Google Scholar 

  60. Schoof M, Hellwig M, Harrison L, Holdhof D, Lauffer MC, Niesen J, et al. The basic helix-loop-helix transcription factor TCF4 impacts brain architecture as well as neuronal morphology and differentiation. Eur J Neurosci. 2020;51:2219–35.

    PubMed  Google Scholar 

  61. Chen T, Wu Q, Zhang Y, Lu T, Yue W, Zhang D. Tcf4 controls neuronal migration of the cerebral cortex through regulation of Bmp7. Front Mol Neurosci. 2016;9:94.

    PubMed Central  PubMed  Google Scholar 

  62. Forrest MP, Waite AJ, Martin-Rendon E, Blake DJ. Knockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation. PLoS One. 2013;8:e73169.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Page SC, Hamersky GR, Gallo RA, Rannals MD, Calcaterra NE, Campbell MN, et al. The schizophrenia- and autism-associated gene, transcription factor 4 regulates the columnar distribution of layer 2/3 prefrontal pyramidal neurons in an activity-dependent manner. Mol Psychiatry. 2018;23:304–15.

    CAS  PubMed  Google Scholar 

  64. Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron. 2004;43:647–61.

    CAS  PubMed  Google Scholar 

  65. LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron. 1995;15:1287–98.

    CAS  PubMed  Google Scholar 

  66. Owens DF, Flint AC, Dammerman RS, Kriegstein AR. Calcium dynamics of neocortical ventricular zone cells. Dev Neurosci. 2000;22:25–33.

    CAS  PubMed  Google Scholar 

  67. Manent J-B, Demarque M, Jorquera I, Pellegrino C, Ben-Ari Y, Aniksztejn L, et al. A noncanonical release of GABA and glutamate modulates neuronal migration. J Neurosci. 2005;25:4755–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Lawler AJ, Brown AR, Bouchard RS, Toong N, Kim Y, Velraj N, et al. Cell type-specific oxidative stress genomic signatures in the globus pallidus of dopamine-depleted mice. J Neurosci. 2020;40:9772–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Zhang Y, Cai Y, Wang Y, Deng X, Zhao Y, Zhang Y, et al. Survival control of oligodendrocyte progenitor cells requires the transcription factor 4 during olfactory bulb development. Cell Death Dis. 2021;12:91.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Micheva KD, Wolman D, Mensh BD, Pax E, Buchanan J, Smith SJ et al. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. eLife. 2016; 5. https://doi.org/10.7554/eLife.15784.

  71. Stedehouder J, Couey JJ, Brizee D, Hosseini B, Slotman JA, Dirven CMF, et al. Fast-spiking parvalbumin interneurons are frequently myelinated in the cerebral cortex of mice and humans. Cereb Cortex. 2017;27:5001–13.

    CAS  PubMed  Google Scholar 

  72. Zonouzi M, Berger D, Jokhi V, Kedaigle A, Lichtman J, Arlotta P. Individual oligodendrocytes show bias for inhibitory axons in the neocortex. Cell Rep. 2019;27:2799–2808.e3.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci. 2006;9:173–9.

    CAS  PubMed  Google Scholar 

  74. Orduz D, Benamer N, Ortolani D, Coppola E, Vigier L, Pierani A, et al. Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis. Nat Commun. 2019;10:4249.

    PubMed Central  PubMed  Google Scholar 

  75. Kim H, Gao EB, Draper A, Berens NC, Vihma H, Zhang X et al. Rescue of behavioral and electrophysiological phenotypes in a Pitt-Hopkins syndrome mouse model by genetic restoration of Tcf4 expression. eLife. 2022; 11. https://doi.org/10.7554/eLife.72290.

  76. Chen Y-JJ, Friedman BA, Ha C, Durinck S, Liu J, Rubenstein JL, et al. Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types. Sci Rep. 2017;7:45656.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Matricardi S, Bonanni P, Iapadre G, Elia M, Cesaroni E, Danieli A, et al. Epilepsy, electroclinical features, and long-term outcomes in Pitt-Hopkins syndrome due to pathogenic variants in the TCF4 gene. Eur J Neurol. 2022;29:19–25.

    PubMed  Google Scholar 

  78. Bone M, Goodspeed K, Sirsi D. Epilepsy and electroencephalography in Pitt-Hopkins syndrome. J Transl Genet Genom. 2022;6:169–78.

    Google Scholar 

  79. Martinowich K, Das D, Sripathy SR, Mai Y, Kenney RF, Maher BJ. Evaluation of Nav1.8 as a therapeutic target for Pitt Hopkins Syndrome. Mol Psychiatry. 2023;28:76–82.

    CAS  PubMed  Google Scholar 

  80. Gonzalez-Burgos G, Cho RY, Lewis DA. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry. 2015;77:1031–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Buzsáki G, Wang X-J. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–25.

    PubMed Central  PubMed  Google Scholar 

  82. Gu B, Shorter JR, Williams LH, Bell TA, Hock P, Dalton KA, et al. Collaborative Cross mice reveal extreme epilepsy phenotypes and genetic loci for seizure susceptibility. Epilepsia. 2020;61:2010–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Harris KD, Shepherd GMG. The neocortical circuit: themes and variations. Nat Neurosci. 2015;18:170–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Karnani MM, Jackson J, Ayzenshtat I, Tucciarone J, Manoocheri K, Snider WG, et al. Cooperative subnetworks of molecularly similar interneurons in mouse neocortex. Neuron. 2016;90:86–100.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Page SC, Sripathy SR, Farinelli F, Ye Z, Wang Y, Hiler DJ et al. Electrophysiological measures from human iPSC-derived neurons are associated with schizophrenia clinical status and predict individual cognitive performance. Proc Natl Acad Sci USA. 2022; 119. https://doi.org/10.1073/pnas.2109395119.

  86. Sripathy SR, Wang Y, Moses RL, Fatemi A, Batista DA, Maher BJ. Generation of 10 patient-specific induced pluripotent stem cells (iPSCs) to model Pitt-Hopkins Syndrome. Stem Cell Res. 2020;48:102001.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature. 2018;563:72–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-. Cell Data. Cell. 2019;177:1888–1902.e21.

    CAS  PubMed  Google Scholar 

  89. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Chiu Y-J, Hsieh Y-H, Huang Y-H. Improved cell composition deconvolution method of bulk gene expression profiles to quantify subsets of immune cells. BMC Med Genomics. 2019;12:169.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012;22:1813–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Tanigawa Y, Dyer ES, Bejerano G. WhichTF is functionally important in your open chromatin data? PLoS Comput Biol. 2022;18:e1010378.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Linderman GC, Zhao J, Roulis M, Bielecki P, Flavell RA, Nadler B, et al. Zero-preserving imputation of single-cell RNA-seq data. Nat Commun. 2022;13:192.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the vision and generosity of the Lieber and Maltz families, who made this work possible. We thank Dr. Keri Martinowich for sharing the CST-cre and TdTom mouse lines. This work was supported by the Lieber Institute, the Pitt-Hopkins Research Foundation Award (BJM), and a NIMH grant R01MH110487 (BJM). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

H-YC and GS performed IHC and confocal imaging; H-YC, GS, TSO, SRS and JFB performed image analysis. H-YC and GRH performed electrophysiology experiments; H-YC and SRS performed qPCR and analysis. BNP performed RNA sequencing and ChIP-seq analysis under ARP supervision. NS performed RNA sequencing analysis on E13.5 samples. H-YC, GS and JFB performed mouse genotyping and colony maintenance. H-YC and BJM contributed to experimental design, data analyses and writing. All authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Brady J. Maher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HY., Phan, B.N., Shim, G. et al. Psychiatric risk gene Transcription Factor 4 (TCF4) regulates the density and connectivity of distinct inhibitory interneuron subtypes. Mol Psychiatry 28, 4679–4692 (2023). https://doi.org/10.1038/s41380-023-02248-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02248-z

Search

Quick links