Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

DNA methylation and the opposing NMDAR dysfunction in schizophrenia and major depression disorders: a converging model for the therapeutic effects of psychedelic compounds in the treatment of psychiatric illness

Abstract

Psychedelic compounds are being increasingly explored as a potential therapeutic option for treating several psychiatric conditions, despite relatively little being known about their mechanism of action. One such possible mechanism, DNA methylation, is a process of epigenetic regulation that changes gene expression via chemical modification of nitrogenous bases. DNA methylation has been implicated in the pathophysiology of several psychiatric conditions, including schizophrenia (SZ) and major depressive disorder (MDD). In this review, we propose alterations to DNA methylation as a converging model for the therapeutic effects of psychedelic compounds, highlighting the N-methyl D-aspartate receptor (NMDAR), a crucial mediator of synaptic plasticity with known dysfunction in both diseases, as an example and anchoring point. We review the established evidence relating aberrant DNA methylation to NMDAR dysfunction in SZ and MDD and provide a model asserting that psychedelic substances may act through an epigenetic mechanism to provide therapeutic effects in the context of these disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNA methylation by DNA methyltransferases.
Fig. 2: NMDA receptor subunits.
Fig. 3: Proposed mechanisms of NMDAR dysfunction in SZ and MDD.
Fig. 4: Psychedelic compounds, mechanisms of action in synaptic plasticity.

Similar content being viewed by others

References

  1. Richetto J, Meyer U. Epigenetic modifications in schizophrenia and related disorders: molecular scars of environmental exposures and source of phenotypic variability. Biol Psychiatry. 2021;89:215–26.

    CAS  PubMed  Google Scholar 

  2. Penner-Goeke S, Binder EB. Epigenetics and depression. Dialogues Clin Neurosci. 2019;21:397–405.

    PubMed  PubMed Central  Google Scholar 

  3. Levine A, Cantoni GL, Razin A. Inhibition of promoter activity by methylation: possible involvement of protein mediators. Proc Natl Acad Sci USA. 1991;88:6515–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boyes J, Bird A. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. Embo J. 1992;11:327–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hwu WL, Lee YM, Lee SC, Wang TR. In vitro DNA methylation inhibits FMR-1 promoter. Biochem Biophys Res Commun. 1993;193:324–9.

    CAS  PubMed  Google Scholar 

  6. Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet. 2011;20:670–80.

    CAS  PubMed  Google Scholar 

  7. Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol. 2009;27:361–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hellman A, Chess A. Gene body-specific methylation on the active X chromosome. Science. 2007;315:1141–3.

    CAS  PubMed  Google Scholar 

  9. Rauch TA, Wu X, Zhong X, Riggs AD, Pfeifer GP. A human B cell methylome at 100-base pair resolution. Proc Natl Acad Sci USA. 2009;106:671–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharm Ther. 2020;205:107426.

    CAS  Google Scholar 

  11. Chan SY, Matthews E, Burnet PW. ON or OFF? Modulating the N-Methyl-D-aspartate receptor in major depression. Front Mol Neurosci. 2016;9:169.

    CAS  PubMed  Google Scholar 

  12. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Krystal JH, Abdallah CG, Sanacora G, Charney DS, Duman RS. Ketamine: a paradigm shift for depression research and treatment. Neuron. 2019;101:774–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Krystal JH, Kavalali ET, Monteggia LM. Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms. Neuropsychopharmacology. 2023. https://doi.org/10.1038/s41386-023-01629-w. Online ahead of print.

  15. Vollenweider FX, Preller KH. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat Rev Neurosci. 2020;21:611–24.

    CAS  PubMed  Google Scholar 

  16. Aleksandrova LR, Phillips AG. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharm Sci. 2021;42:929–42.

    CAS  PubMed  Google Scholar 

  17. Deichmann U. Epigenetics: the origins and evolution of a fashionable topic. Dev Biol. 2016;416:249–54.

    CAS  PubMed  Google Scholar 

  18. Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, et al. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994;22:1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yen RW, Vertino PM, Nelkin BD, Yu JJ, el-Deiry W, Cumaraswamy A, et al. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res. 1992;20:2287–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie S, Wang Z, Okano M, Nogami M, Li Y, He WW, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999;236:87–95.

    CAS  PubMed  Google Scholar 

  21. Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem. 2004;279:27816–23.

    CAS  PubMed  Google Scholar 

  22. Grippo P, Iaccarino M, Parisi E, Scarano E. Methylation of DNA in developing sea urchin embryos. J Mol Biol. 1968;36:195–208.

    CAS  PubMed  Google Scholar 

  23. Bianchi NO, Vidal-Rioja L, Cleaver JE. Direct visualization of the sites of DNA methylation in human, and mosquito chromosomes. Chromosoma. 1986;94:362–6.

    CAS  PubMed  Google Scholar 

  24. Edwards JR, O’Donnell AH, Rollins RA, Peckham HE, Lee C, Milekic MH, et al. Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res. 2010;20:972–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982;10:2709–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985;40:91–99.

    CAS  PubMed  Google Scholar 

  27. Bird AP. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980;8:1499–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ioshikhes IP, Zhang MQ. Large-scale human promoter mapping using CpG islands. Nat Genet. 2000;26:61–63.

    CAS  PubMed  Google Scholar 

  29. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell. 1989;58:499–507.

    CAS  PubMed  Google Scholar 

  31. Kokura K, Kaul SC, Wadhwa R, Nomura T, Khan MM, Shinagawa T, et al. The Ski protein family is required for MeCP2-mediated transcriptional repression. J Biol Chem. 2001;276:34115–21.

    CAS  PubMed  Google Scholar 

  32. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19:187–91.

    CAS  PubMed  Google Scholar 

  33. Kyle SM, Vashi N, Justice MJ. Rett syndrome: a neurological disorder with metabolic components. Open Biol. 2018;8:170216.

    PubMed  PubMed Central  Google Scholar 

  34. Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 2008;30:755–66.

    CAS  PubMed  Google Scholar 

  35. Rajarajan P, Jiang Y, Kassim BS, Akbarian S. Chromosomal conformations and epigenomic regulation in schizophrenia. Prog Mol Biol Transl Sci. 2018;157:21–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20:320–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Roussos P, Mitchell AC, Voloudakis G, Fullard JF, Pothula VM, Tsang J, et al. A role for noncoding variation in schizophrenia. Cell Rep. 2014;9:1417–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhubi A, Veldic M, Puri NV, Kadriu B, Caruncho H, Loza I, et al. An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr Res. 2009;111:115–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dong E, Ruzicka WB, Grayson DR, Guidotti A. DNA-methyltransferase1 (DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients. Schizophr Res. 2015;167:35–41.

    CAS  PubMed  Google Scholar 

  41. Veldic M, Caruncho HJ, Liu WS, Davis J, Satta R, Grayson DR, et al. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci USA. 2004;101:348–53.

    CAS  PubMed  Google Scholar 

  42. Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci USA. 2005;102:2152–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry. 2007;12:385–97.

    CAS  PubMed  Google Scholar 

  44. Veldic M, Kadriu B, Maloku E, Agis-Balboa RC, Guidotti A, Davis JM, et al. Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder. Schizophr Res. 2007;91:51–61.

    PubMed  PubMed Central  Google Scholar 

  45. Antun FT, Burnett GB, Cooper AJ, Daly RJ, Smythies JR, Zealley AK. The effects of L-methionine (without MAOI) in schizophrenia. J Psychiatr Res. 1971;8:63–71.

    CAS  PubMed  Google Scholar 

  46. Noh JS, Sharma RP, Veldic M, Salvacion AA, Jia X, Chen Y, et al. DNA methyltransferase 1 regulates reelin mRNA expression in mouse primary cortical cultures. Proc Natl Acad Sci USA. 2005;102:1749–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jaffe AE, Gao Y, Deep-Soboslay A, Tao R, Hyde TM, Weinberger DR, et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat Neurosci. 2016;19:40–47.

    CAS  PubMed  Google Scholar 

  48. Hannon E, Dempster EL, Mansell G, Burrage J, Bass N, Bohlken MM, et al. DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia. Elife. 2021;10:e58430.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Aberg KA, McClay JL, Nerella S, Clark S, Kumar G, Chen W, et al. Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry. 2014;71:255–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang W, Li W, Wu Y, Tian X, Duan H, Li S, et al. Genome-wide DNA methylation and gene expression analyses in monozygotic twins identify potential biomarkers of depression. Transl Psychiatry. 2021;11:416.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA. 2005;102:9341–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;134b:60–66.

    PubMed  Google Scholar 

  53. Nabil Fikri RM, Norlelawati AT, Nour El-Huda AR, Hanisah MN, Kartini A, Norsidah K, et al. Reelin (RELN) DNA methylation in the peripheral blood of schizophrenia. J Psychiatr Res. 2017;88:28–37.

    PubMed  Google Scholar 

  54. Zhou J, Zhou D, Yan T, Chen W, Xie H, Xiong Y. Association between CpG island DNA methylation in the promoter region of RELN and positive and negative types of schizophrenia. J Int Med Res. 2022;50:3000605221100345.

    CAS  PubMed  Google Scholar 

  55. Tochigi M, Iwamoto K, Bundo M, Komori A, Sasaki T, Kato N, et al. Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol Psychiatry. 2008;63:530–3.

    CAS  PubMed  Google Scholar 

  56. Bonsch D, Wunschel M, Lenz B, Janssen G, Weisbrod M, Sauer H. Methylation matters? Decreased methylation status of genomic DNA in the blood of schizophrenic twins. Psychiatry Res. 2012;198:533–7.

    PubMed  Google Scholar 

  57. Dong E, Gavin DP, Chen Y, Davis J. Upregulation of TET1 and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients. Transl Psychiatry. 2012;2:e159.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang HS, Akbarian S. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS One. 2007;2:e809.

    PubMed  PubMed Central  Google Scholar 

  59. Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15:3132–45.

    CAS  PubMed  Google Scholar 

  60. Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S, et al. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res. 2011;45:1432–8.

    PubMed  Google Scholar 

  61. Walton E, Liu J, Hass J, White T, Scholz M, Roessner V, et al. MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics. 2014;9:1101–7.

    PubMed  PubMed Central  Google Scholar 

  62. Dai D, Cheng J, Zhou K, Lv Y, Zhuang Q, Zheng R, et al. Significant association between DRD3 gene body methylation and schizophrenia. Psychiatry Res. 2014;220:772–7.

    CAS  PubMed  Google Scholar 

  63. Cheng J, Wang Y, Zhou K, Wang L, Li J, Zhuang Q, et al. Male-specific association between dopamine receptor D4 gene methylation and schizophrenia. PLoS One. 2014;9:e89128.

    PubMed  PubMed Central  Google Scholar 

  64. Funahashi Y, Yoshino Y, Yamazaki K, Ozaki Y, Mori Y, Mori T, et al. Analysis of methylation and -141C Ins/Del polymorphisms of the dopamine receptor D2 gene in patients with schizophrenia. Psychiatry Res. 2019;278:135–40.

    CAS  PubMed  Google Scholar 

  65. Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: meta-analysis of model reliability. Neurosci Biobehav Rev. 2019;99:101–16.

    PubMed  Google Scholar 

  66. Ferland CL, Schrader LA. Regulation of histone acetylation in the hippocampus of chronically stressed rats: a potential role of sirtuins. Neuroscience. 2011;174:104–14.

    CAS  PubMed  Google Scholar 

  67. LaPlant Q, Vialou V, Covington HE 3rd, Dumitriu D, Feng J, Warren BL, et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci. 2010;13:1137–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stankiewicz AM, Swiergiel AH, Lisowski P. Epigenetics of stress adaptations in the brain. Brain Res Bull. 2013;98:76–92.

    CAS  PubMed  Google Scholar 

  69. Li M, D’Arcy C, Li X, Zhang T, Joober R, Meng X. What do DNA methylation studies tell us about depression? A systematic review. Transl Psychiatry. 2019;9:68.

    PubMed  PubMed Central  Google Scholar 

  70. Uchida S, Hara K, Kobayashi A, Otsuki K, Yamagata H, Hobara T, et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron. 2011;69:359–72.

    CAS  PubMed  Google Scholar 

  71. Park C, Rosenblat JD, Brietzke E, Pan Z, Lee Y, Cao B, et al. Stress, epigenetics and depression: a systematic review. Neurosci Biobehav Rev. 2019;102:139–52.

    CAS  PubMed  Google Scholar 

  72. Sales AJ, Maciel IS, Suavinha A, Joca SRL. Modulation of DNA methylation and gene expression in rodent cortical neuroplasticity pathways exerts rapid antidepressant-like effects. Mol Neurobiol. 2021;58:777–94.

    CAS  PubMed  Google Scholar 

  73. Bang M, Kang JI, Kim SJ, Park JY, Kim KR, Lee SY, et al. Reduced DNA methylation of the oxytocin receptor gene is associated with anhedonia-asociality in women with recent-onset schizophrenia and ultra-high risk for psychosis. Schizophr Bull. 2019;45:1279–90.

    PubMed  PubMed Central  Google Scholar 

  74. Luo C, Pi X, Hu N, Wang X, Xiao Y, Li S, et al. Subtypes of schizophrenia identified by multi-omic measures associated with dysregulated immune function. Mol Psychiatry. 2021;26:6926–36.

    CAS  PubMed  Google Scholar 

  75. Yamagata H, Ogihara H, Matsuo K, Uchida S, Kobayashi A, Seki T, et al. Distinct epigenetic signatures between adult-onset and late-onset depression. Sci Rep. 2021;11:2296.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Li Z, He Y, Ma X, Chen X. Epigenetic age analysis of brain in major depressive disorder. Psychiatry Res. 2018;269:621–4.

    PubMed  Google Scholar 

  77. Hodes GE, Pfau ML, Purushothaman I, Ahn HF, Golden SA, Christoffel DJ, et al. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J Neurosci. 2015;35:16362–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Watkins JC, Evans RH. Excitatory amino acid transmitters. Annu Rev Pharm Toxicol. 1981;21:165–204.

    CAS  Google Scholar 

  79. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325:529–31.

    CAS  PubMed  Google Scholar 

  80. Clements JD, Westbrook GL. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron. 1991;7:605–13.

    CAS  PubMed  Google Scholar 

  81. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor. Nature. 1991;354:31–37.

    CAS  PubMed  Google Scholar 

  82. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992;256:1217–21.

    CAS  PubMed  Google Scholar 

  83. Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature. 1998;393:377–81.

    CAS  PubMed  Google Scholar 

  84. Sun L, Margolis FL, Shipley MT, Lidow MS. Identification of a long variant of mRNA encoding the NR3 subunit of the NMDA receptor: its regional distribution and developmental expression in the rat brain. FEBS Lett. 1998;441:392–6.

    CAS  PubMed  Google Scholar 

  85. Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S. Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun. 1992;185:826–32.

    CAS  PubMed  Google Scholar 

  86. Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, et al. Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron. 1993;10:943–54.

    CAS  PubMed  Google Scholar 

  87. Mandich P, Schito AM, Bellone E, Antonacci R, Finelli P, Rocchi M, et al. Mapping of the human NMDAR2B receptor subunit gene (GRIN2B) to chromosome 12p12. Genomics. 1994;22:216–8.

    CAS  PubMed  Google Scholar 

  88. Kalsi G, Whiting P, Bourdelles BL, Callen D, Barnard EA, Gurling H. Localization of the human NMDAR2D receptor subunit gene (GRIN2D) to 19q13.1-qter, the NMDAR2A subunit gene to 16p13.2 (GRIN2A), and the NMDAR2C subunit gene (GRIN2C) to 17q24-q25 using somatic cell hybrid and radiation hybrid mapping panels. Genomics. 1998;47:423–5.

    CAS  PubMed  Google Scholar 

  89. Andersson O, Stenqvist A, Attersand A, von Euler G. Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics. 2001;78:178–84.

    CAS  PubMed  Google Scholar 

  90. Tovar KR, Westbrook GL. Mobile NMDA receptors at hippocampal synapses. Neuron. 2002;34:255–64.

    CAS  PubMed  Google Scholar 

  91. Delint-Ramirez I, Salcedo-Tello P, Bermudez-Rattoni F. Spatial memory formation induces recruitment of NMDA receptor and PSD-95 to synaptic lipid rafts. J Neurochem. 2008;106:1658–68.

    CAS  PubMed  Google Scholar 

  92. Quinlan EM, Philpot BD, Huganir RL, Bear MF. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci. 1999;2:352–7.

    CAS  PubMed  Google Scholar 

  93. Erreger K, Dravid SM, Banke TG, Wyllie DJ, Traynelis SF. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol. 2005;563:345–58. Pt 2

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tovar KR, Westbrook GL. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci. 1999;19:4180–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Xue M, Zhou SB, Liu RH, Chen QY, Zhuo M, Li XH. NMDA receptor-dependent synaptic depression in potentiated synapses of the anterior cingulate cortex of adult mice. Mol Pain. 2021;17:17448069211018045.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bennett MR, Lagopoulos J. Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol. 2014;112:80–99.

    CAS  PubMed  Google Scholar 

  97. Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AL, Duarte CB. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci. 2007;35:208–19.

    CAS  PubMed  Google Scholar 

  98. Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci. 2009;10:850–60.

    CAS  PubMed  Google Scholar 

  99. Monaco SA, Gulchina Y, Gao WJ. NR2B subunit in the prefrontal cortex: a double-edged sword for working memory function and psychiatric disorders. Neurosci Biobehav Rev. 2015;56:127–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gao WJ, Yang SS, Mack NR, Chamberlin LA. Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry. 2022;27:731–43.

    CAS  PubMed  Google Scholar 

  101. Perszyk RE, DiRaddo JO, Strong KL, Low CM, Ogden KK, Khatri A, et al. GluN2D-containing N-methyl-d-aspartate receptors mediate synaptic transmission in hippocampal interneurons and regulate interneuron activity. Mol Pharmacol. 2016;90:689–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12:529–40.

    CAS  PubMed  Google Scholar 

  103. Wenzel A, Scheurer L, Künzi R, Fritschy JM, Mohler H, Benke D. Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain. Neuroreport. 1995;7:45–48.

    CAS  PubMed  Google Scholar 

  104. Standaert DG, Landwehrmeyer GB, Kerner JA, Penney JB Jr., Young AB. Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneurons in the rat neostriatum, neocortex and hippocampus. Brain Res Mol Brain Res. 1996;42:89–102.

    CAS  PubMed  Google Scholar 

  105. Rauner C, Kohr G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem. 2011;286:7558–66.

    CAS  PubMed  Google Scholar 

  106. Luo J, Wang Y, Yasuda RP, Dunah AW, Wolfe BB. The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharmacol. 1997;51:79–86.

    CAS  PubMed  Google Scholar 

  107. Gray JA, Shi Y, Usui H, During MJ, Sakimura K, Nicoll RA. Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron. 2011;71:1085–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Williams K, Russell SL, Shen YM, Molinoff PB. Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron. 1993;10:267–78.

    CAS  PubMed  Google Scholar 

  109. Ogden KK, Traynelis SF. New advances in NMDA receptor pharmacology. Trends Pharm Sci. 2011;32:726–33.

    CAS  PubMed  Google Scholar 

  110. Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63:S191–203.

    CAS  PubMed  Google Scholar 

  111. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199–214.

    CAS  PubMed  Google Scholar 

  112. Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology. 1996;14:301–7.

    CAS  PubMed  Google Scholar 

  113. Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology. 1999;20:106–18.

    CAS  PubMed  Google Scholar 

  114. Olney JW, Farber NB. NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology. 1995;13:335–45.

    CAS  PubMed  Google Scholar 

  115. Malhotra AK, Adler CM, Kennison SD, Elman I, Pickar D, Breier A. Clozapine blunts N-methyl-D-aspartate antagonist-induced psychosis: a study with ketamine. Biol psychiatry. 1997;42:664–8.

    CAS  PubMed  Google Scholar 

  116. Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology. 2001;25:455–67.

    CAS  PubMed  Google Scholar 

  117. Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res. 2020;217:60–70.

    PubMed  Google Scholar 

  118. Adell A. Brain NMDA receptors in schizophrenia and depression. Biomolecules. 2020;10:947.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Coyle JT. NMDA receptor and schizophrenia: a brief history. Schizophr Bull. 2012;38:920–6.

    PubMed  PubMed Central  Google Scholar 

  120. Catts VS, Lai YL, Weickert CS, Weickert TW, Catts SV. A quantitative review of the postmortem evidence for decreased cortical N-methyl-d-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits? Biol Psychol. 2016;116:57–67.

    PubMed  Google Scholar 

  121. Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604:509–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Banerjee A, Wang HY, Borgmann-Winter KE, MacDonald ML, Kaprielian H, Stucky A, et al. Src kinase as a mediator of convergent molecular abnormalities leading to NMDAR hypoactivity in schizophrenia. Mol Psychiatry. 2015;20:1091–1100.

    CAS  PubMed  Google Scholar 

  124. McNally JM, McCarley RW. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities. Curr Opin Psychiatry. 2016;29:202–10.

    PubMed  PubMed Central  Google Scholar 

  125. Antonoudiou P, Tan YL, Kontou G, Upton AL, Mann EO. Parvalbumin and somatostatin interneurons contribute to the generation of hippocampal gamma oscillations. J Neurosci. 2020;40:7668–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull. 2012;38:950–7.

    PubMed  PubMed Central  Google Scholar 

  127. Pinault D. N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex. Biol Psychiatry. 2008;63:730–5.

    CAS  PubMed  Google Scholar 

  128. Hong LE, Summerfelt A, Buchanan RW, O’Donnell P, Thaker GK, Weiler MA, et al. Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology. 2010;35:632–40.

    PubMed  Google Scholar 

  129. Aguilar DD, Radzik LK, Schiffino FL, Folorunso OO, Zielinski MR, Coyle JT, et al. Altered neural oscillations and behavior in a genetic mouse model of NMDA receptor hypofunction. Sci Rep. 2021;11:9031.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Jami SA, Cameron S, Wong JM, Daly ER, McAllister AK, Gray JA. Increased excitation-inhibition balance and loss of GABAergic synapses in the serine racemase knockout model of NMDA receptor hypofunction. J Neurophysiol. 2021;126:11–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Alvarez RJ, Pafundo DE, Zold CL, Belforte JE. Interneuron NMDA receptor ablation induces hippocampus-prefrontal cortex functional hypoconnectivity after adolescence in a mouse model of schizophrenia. J Neurosci. 2020;40:3304–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Tan Y, Fujita Y, Pu Y, Chang L, Qu Y, Wang X, et al. Repeated intermittent administration of (R)-ketamine during juvenile and adolescent stages prevents schizophrenia-relevant phenotypes in adult offspring after maternal immune activation: a role of TrkB signaling. Eur Arch Psychiatry Clin Neurosci. 2022;272:693–701.

    PubMed  PubMed Central  Google Scholar 

  133. Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, et al. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry. 2000;48:627–40.

    CAS  PubMed  Google Scholar 

  134. Tanqueiro SR, Mouro FM, Ferreira CB, Freitas CF, Fonseca-Gomes J, Simoes do Couto F, et al. Sustained NMDA receptor hypofunction impairs brain-derived neurotropic factor signalling in the PFC, but not in the hippocampus, and disturbs PFC-dependent cognition in mice. J Psychopharmacol. 2021;35:730–43.

    CAS  PubMed  Google Scholar 

  135. Lopez-Gil X, Artigas F, Adell A. Role of different monoamine receptors controlling MK-801-induced release of serotonin and glutamate in the medial prefrontal cortex: relevance for antipsychotic action. Int J Neuropsychopharmacol. 2009;12:487–99.

    CAS  PubMed  Google Scholar 

  136. Crane GE. Cyloserine as an antidepressant agent. Am J Psychiatry. 1959;115:1025–6.

    CAS  PubMed  Google Scholar 

  137. Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharm. 1990;185:1–10.

    CAS  Google Scholar 

  138. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    CAS  PubMed  Google Scholar 

  139. Hu YD, Xiang YT, Fang JX, Zu S, Sha S, Shi H, et al. Single i.v. ketamine augmentation of newly initiated escitalopram for major depression: results from a randomized, placebo-controlled 4-week study. Psychol Med. 2016;46:623–35.

    PubMed  Google Scholar 

  140. Daly EJ, Trivedi MH, Janik A, Li H, Zhang Y, Li X, et al. Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2019;76:893–903.

    PubMed  PubMed Central  Google Scholar 

  141. Popova V, Daly EJ, Trivedi M, Cooper K, Lane R, Lim P, et al. Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am J Psychiatry. 2019;176:428–38.

    PubMed  Google Scholar 

  142. Vázquez GH, Bahji A, Undurraga J, Tondo L, Baldessarini RJ. Efficacy and tolerability of combination treatments for major depression: antidepressants plus second-generation antipsychotics vs. esketamine vs. lithium. J Psychopharmacol. 2021;35:890–900.

    PubMed  PubMed Central  Google Scholar 

  143. Jelen LA, Young AH, Stone JM. Ketamine: a tale of two enantiomers. J Psychopharmacol. 2021;35:109–23.

    CAS  PubMed  Google Scholar 

  144. Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Pickar D. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry. 1997;154:805–11.

    CAS  PubMed  Google Scholar 

  145. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Ebert B, Mikkelsen S, Thorkildsen C, Borgbjerg FM. Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur J Pharm. 1997;333:99–104.

    CAS  Google Scholar 

  147. Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:e632.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Fukumoto K, Toki H, Iijima M, Hashihayata T, Yamaguchi JI, Hashimoto K, et al. Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine. J Pharm Exp Ther. 2017;361:9–16.

    CAS  Google Scholar 

  149. Chang L, Zhang K, Pu Y, Qu Y, Wang SM, Xiong Z, et al. Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Pharm Biochem Behav. 2019;181:53–59.

    CAS  Google Scholar 

  150. Bonaventura J, Lam S, Carlton M, Boehm MA, Gomez JL, Solis O, et al. Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability. Mol Psychiatry. 2021;26:6704–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Hashimoto K, Kakiuchi T, Ohba H, Nishiyama S, Tsukada H. Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys. Eur Arch Psychiatry Clin Neurosci. 2017;267:173–6.

    PubMed  Google Scholar 

  152. Masaki Y, Kashiwagi Y, Watabe H, Abe K. (R)- and (S)-ketamine induce differential fMRI responses in conscious rats. Synapse. 2019;73:e22126.

    CAS  PubMed  Google Scholar 

  153. Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpire E, et al. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. Elife. 2014;3:e03581.

    PubMed  PubMed Central  Google Scholar 

  154. Jang S, Suh SH, Yoo HS, Lee YM, Oh S. Changes in iNOS, GFAP and NR1 expression in various brain regions and elevation of sphingosine-1-phosphate in serum after immobilized stress. Neurochem Res. 2008;33:842–51.

    CAS  PubMed  Google Scholar 

  155. Bartanusz V, Aubry JM, Pagliusi S, Jezova D, Baffi J, Kiss JZ. Stress-induced changes in messenger RNA levels of N-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience. 1995;66:247–52.

    CAS  PubMed  Google Scholar 

  156. Fitzgerald LW, Ortiz J, Hamedani AG, Nestler EJ. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci. 1996;16:274–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Masrour FF, Peeri M, Azarbayjani MA, Hosseini MJ. Voluntary exercise during adolescence mitigated negative the effects of maternal separation stress on the depressive-like behaviors of adult male rats: role of NMDA receptors. Neurochem Res. 2018;43:1067–74.

    CAS  PubMed  Google Scholar 

  158. Dong BE, Chen H, Sakata K. BDNF deficiency and enriched environment treatment affect neurotransmitter gene expression differently across ages. J Neurochem. 2020;154:41–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Sathyanesan M, Haiar JM, Watt MJ, Newton SS. Restraint stress differentially regulates inflammation and glutamate receptor gene expression in the hippocampus of C57BL/6 and BALB/c mice. Stress. 2017;20:197–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Weiland NG, Orchinik M, Tanapat P. Chronic corticosterone treatment induces parallel changes in N-methyl-D-aspartate receptor subunit messenger RNA levels and antagonist binding sites in the hippocampus. Neuroscience. 1997;78:653–62.

    CAS  PubMed  Google Scholar 

  161. Pacheco A, Aguayo FI, Aliaga E, Munoz M, Garcia-Rojo G, Olave FA, et al. Chronic stress triggers expression of immediate early genes and differentially affects the expression of AMPA and NMDA subunits in dorsal and ventral hippocampus of rats. Front Mol Neurosci. 2017;10:244.

    PubMed  PubMed Central  Google Scholar 

  162. Tordera RM, Garcia-García AL, Elizalde N, Segura V, Aso E, Venzala E, et al. Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex. Eur Neuropsychopharmacol. 2011;21:23–32.

    CAS  PubMed  Google Scholar 

  163. Lee YA, Goto Y. Chronic stress modulation of prefrontal cortical NMDA receptor expression disrupts limbic structure-prefrontal cortex interaction. Eur J Neurosci. 2011;34:426–36.

    PubMed  Google Scholar 

  164. Fachim HA, Loureiro CM, Corsi-Zuelli F, Shuhama R, Louzada-Junior P, Menezes PR, et al. GRIN2B promoter methylation deficits in early-onset schizophrenia and its association with cognitive function. Epigenomics. 2019;11:401–10.

    CAS  PubMed  Google Scholar 

  165. Loureiro CM, Fachim HA, Corsi-Zuelli F, Shuhama R, Menezes PR, Dalton CF, et al. The relationship of childhood trauma and DNA methylation of NMDA receptor genes in first-episode schizophrenia. Epigenomics. 2021;13:927–37.

    CAS  PubMed  Google Scholar 

  166. Loureiro CM, Fachim HA, Corsi-Zuelli F, Shuhama R, Joca S, Menezes PR, et al. Epigenetic-mediated N-methyl-D-aspartate receptor changes in the brain of isolated reared rats. Epigenomics. 2020;12:1983–97.

    CAS  PubMed  Google Scholar 

  167. Loureiro CM, Fachim HA, Harte MK, Dalton CF, Reynolds GP, Subchronic PCP. effects on DNA methylation and protein expression of NMDA receptor subunit genes in the prefrontal cortex and hippocampus of female rats. J Psychopharmacol. 2022;36:238–44.

    CAS  PubMed  Google Scholar 

  168. Gulchina Y, Xu SJ, Snyder MA, Elefant F, Gao WJ. Epigenetic mechanisms underlying NMDA receptor hypofunction in the prefrontal cortex of juvenile animals in the MAM model for schizophrenia. J Neurochemistry. 2017;143:320–33.

    CAS  Google Scholar 

  169. Latusz J, Maćkowiak M. Early-life blockade of NMDA receptors induces epigenetic abnormalities in the adult medial prefrontal cortex: possible involvement in memory impairment in trace fear conditioning. Psychopharmacology. 2020;237:231–48.

    CAS  PubMed  Google Scholar 

  170. Bharadwaj R, Peter Cyril J, Jiang Y, Roussos P, Vogel-Ciernia A, Shen EY, et al. Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron. 2014;84:997–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Jiang Y, Jakovcevski M, Bharadwaj R, Connor C, Schroeder FA, Lin CL, et al. Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J Neurosci. 2010;30:7152–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Weder N, Zhang H, Jensen K, Yang BZ, Simen A, Jackowski A, et al. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J Am Acad Child Adolesc Psychiatry. 2014;53:417–424 e415.

    PubMed  PubMed Central  Google Scholar 

  173. Montalvo-Ortiz JL, Bordner KA, Carlyle BC, Gelernter J, Simen AA, Kaufman J. The role of genes involved in stress, neural plasticity, and brain circuitry in depressive phenotypes: Convergent findings in a mouse model of neglect. Behav Brain Res. 2016;315:71–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kaut O, Schmitt I, Hofmann A, Hoffmann P, Schlaepfer TE, Wullner U, et al. Aberrant NMDA receptor DNA methylation detected by epigenome-wide analysis of hippocampus and prefrontal cortex in major depression. Eur Arch Psychiatry Clin Neurosci. 2015;265:331–41.

    PubMed  Google Scholar 

  175. Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. Psychedelics and psychedelic-assisted psychotherapy. Am J Psychiatry. 2020;177:391–410.

    PubMed  Google Scholar 

  176. Inserra A, De Gregorio D, Gobbi G. Psychedelics in psychiatry: neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Pharmacol Rev. 2021;73:202–77.

    CAS  PubMed  Google Scholar 

  177. Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–2544.e2534.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Jefferson SJ, Gregg I, Dibbs M, Liao C, Wu H, Davoudian PA, et al. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. Neuropsychopharmacology. 2023;48:1257–66.

    CAS  PubMed  Google Scholar 

  179. Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23:3170–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Doss MK, Považan M, Rosenberg MD, Sepeda ND, Davis AK, Finan PH, et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl Psychiatry. 2021;11:574.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Skosnik PD, Sloshower J, Safi-Aghdam H, Pathania S, Syed S, Pittman B, et al. Sub-acute effects of psilocybin on EEG correlates of neural plasticity in major depression: relationship to symptoms. J Psychopharmacol. 2023;37:687–97.

    CAS  PubMed  Google Scholar 

  182. Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci. 2023;26:1032–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. 2021;118:e2022489118.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, et al. Psychedelics reopen the social reward learning critical period. Nature. 2023;618:790–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Nardou R, Lewis EM, Rothhaas R, Xu R, Yang A, Boyden E, et al. Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature. 2019;569:116–20.

    CAS  PubMed  Google Scholar 

  186. Gerra MC, Jayanthi S, Manfredini M, Walther D, Schroeder J, Phillips KA, et al. Gene variants and educational attainment in cannabis use: mediating role of DNA methylation. Transl Psychiatry. 2018;8:23.

    PubMed  PubMed Central  Google Scholar 

  187. Clark SL, Chan R, Zhao M, Xie LY, Copeland WE, Aberg KA, et al. Methylomic investigation of problematic adolescent cannabis use and its negative mental health consequences. J Am Acad Child Adolesc Psychiatry. 2021;60:1524–32.

    PubMed  PubMed Central  Google Scholar 

  188. Markunas CA, Hancock DB, Xu Z, Quach BC, Fang F, Sandler DP, et al. Epigenome-wide analysis uncovers a blood-based DNA methylation biomarker of lifetime cannabis use. Am J Med Genet B Neuropsychiatr Genet. 2021;186:173–82.

    CAS  PubMed  Google Scholar 

  189. Murphy SK, Itchon-Ramos N, Visco Z, Huang Z, Grenier C, Schrott R, et al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics. 2018;13:1208–21.

    PubMed  PubMed Central  Google Scholar 

  190. Schrott R, Rajavel M, Acharya K, Huang Z, Acharya C, Hawkey A, et al. Sperm DNA methylation altered by THC and nicotine: vulnerability of neurodevelopmental genes with bivalent chromatin. Sci Rep. 2020;10:16022.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Wanner NM, Colwell M, Drown C, Faulk C. Subacute cannabidiol alters genome-wide DNA methylation in adult mouse hippocampus. Environ Mol Mutagen. 2020;61:890–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Wanner NM, Colwell M, Drown C, Faulk C. Developmental cannabidiol exposure increases anxiety and modifies genome-wide brain DNA methylation in adult female mice. Clin Epigenetics. 2021;13:4.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Watson CT, Szutorisz H, Garg P, Martin Q, Landry JA, Sharp AJ, et al. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology. 2015;40:2993–3005.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Cheng MC, Hsu SH, Chen CH. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain. Brain Res. 2015;1629:126–34.

    CAS  PubMed  Google Scholar 

  195. Inserra A, Campanale A, Cheishvili D, Dymov S, Wong A, Marcal N, et al. Modulation of DNA methylation and protein expression in the prefrontal cortex by repeated administration of D-lysergic acid diethylamide (LSD): Impact on neurotropic, neurotrophic, and neuroplasticity signaling. Prog Neuropsychopharmacol Biol Psychiatry. 2022;119:110594.

    CAS  PubMed  Google Scholar 

  196. Sun L, Verkaik-Schakel RN, Biber K, Plösch T, Serchov T. Antidepressant treatment is associated with epigenetic alterations of Homer1 promoter in a mouse model of chronic depression. J Affect Disord. 2021;279:501–9.

    CAS  PubMed  Google Scholar 

  197. Ju LS, Yang JJ, Lei L, Xia JY, Luo D, Ji MH, et al. The combination of long-term ketamine and extinction training contributes to fear erasure by bdnf methylation. Front Cell Neurosci. 2017;11:100.

    PubMed  PubMed Central  Google Scholar 

  198. de la Fuente Revenga M, Zhu B, Guevara CA, Naler LB, Saunders JM, Zhou Z, et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Rep. 2021;37:109836.

    PubMed  Google Scholar 

  199. Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature. 2021;589:474–9.

    CAS  PubMed  Google Scholar 

  200. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci. 2010;13:76–83.

    CAS  PubMed  Google Scholar 

  201. Nakao K, Jeevakumar V, Jiang SZ, Fujita Y, Diaz NB, Pretell Annan CA, et al. Schizophrenia-like dopamine release abnormalities in a mouse model of NMDA receptor hypofunction. Schizophr Bull. 2019;45:138–47.

    PubMed  Google Scholar 

  202. Nakao K, Singh M, Sapkota K, Hagler BC, Hunter RN, Raman C, et al. GSK3beta inhibition restores cortical gamma oscillation and cognitive behavior in a mouse model of NMDA receptor hypofunction relevant to schizophrenia. Neuropsychopharmacology. 2020;45:2207–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Gunasekaran S, Jacob RS, Omkumar RV. Differential expression of miR-148b, miR-129-2 and miR-296 in animal models of schizophrenia-Relevance to NMDA receptor hypofunction. Neuropharmacology. 2022;210:109024.

    CAS  PubMed  Google Scholar 

  204. Rodriguez-Munoz M, Sanchez-Blazquez P, Callado LF, Meana JJ, Garzon-Nino J. Schizophrenia and depression, two poles of endocannabinoid system deregulation. Transl Psychiatry. 2017;7:1291.

    PubMed  PubMed Central  Google Scholar 

  205. Karolewicz B, Szebeni K, Gilmore T, Maciag D, Stockmeier CA, Ordway GA. Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression. Int J Neuropsychopharmacol. 2009;12:143–53.

    CAS  PubMed  Google Scholar 

  206. Karolewicz B, Stockmeier CA, Ordway GA. Elevated levels of the NR2C subunit of the NMDA receptor in the locus coeruleus in depression. Neuropsychopharmacology. 2005;30:1557–67.

    CAS  PubMed  Google Scholar 

  207. Chandley MJ, Szebeni A, Szebeni K, Crawford JD, Stockmeier CA, Turecki G, et al. Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression. Int J Neuropsychopharmacol. 2014;17:1569–78.

    CAS  PubMed  Google Scholar 

  208. Gray AL, Hyde TM, Deep-Soboslay A, Kleinman JE, Sodhi MS. Sex differences in glutamate receptor gene expression in major depression and suicide. Mol Psychiatry. 2015;20:1057–68.

    CAS  PubMed  Google Scholar 

  209. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol psychiatry. 2009;33:70–75.

    CAS  PubMed  Google Scholar 

  210. Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH. Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology. 2007;32:1888–902.

    CAS  PubMed  Google Scholar 

  211. Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacology. 2008;33:2175–86.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Jake D. Clarin for his comments on the manuscript. The images were created with BioRender.com. This study was supported by NIH R21MH121836, R21MH129989, R01MH131053, and Pennsylvania Commonwealth 4100085747 (CURE 2016) to WJG.

Author information

Authors and Affiliations

Authors

Contributions

L.T.F. and W-J.G. wrote the manuscript.

Corresponding author

Correspondence to Wen-Jun Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flynn, L.T., Gao, WJ. DNA methylation and the opposing NMDAR dysfunction in schizophrenia and major depression disorders: a converging model for the therapeutic effects of psychedelic compounds in the treatment of psychiatric illness. Mol Psychiatry 28, 4553–4567 (2023). https://doi.org/10.1038/s41380-023-02235-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02235-4

This article is cited by

Search

Quick links