Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tau: a biomarker of Huntington’s disease

Abstract

Developing effective treatments for patients with Huntington’s disease (HD)—a neurodegenerative disorder characterized by severe cognitive, motor and psychiatric impairments—is proving extremely challenging. While the monogenic nature of this condition enables to identify individuals at risk, robust biomarkers would still be extremely valuable to help diagnose disease onset and progression, and especially to confirm treatment efficacy. If measurements of cerebrospinal fluid neurofilament levels, for example, have demonstrated use in recent clinical trials, other proteins may prove equal, if not greater, relevance as biomarkers. In fact, proteins such as tau could specifically be used to detect/predict cognitive affectations. We have herein reviewed the literature pertaining to the association between tau levels and cognitive states, zooming in on Alzheimer’s disease, Parkinson’s disease and traumatic brain injury in which imaging, cerebrospinal fluid, and blood samples have been interrogated or used to unveil a strong association between tau and cognition. Collectively, these areas of research have accrued compelling evidence to suggest tau-related measurements as both diagnostic and prognostic tools for clinical practice. The abundance of information retrieved in this niche of study has laid the groundwork for further understanding whether tau-related biomarkers may be applied to HD and guide future investigations to better understand and treat this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tau in various diseases.
Fig. 2: Tau.

Similar content being viewed by others

References

  1. Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis. 2013;33:S123–39.

    Article  PubMed  Google Scholar 

  2. Cisbani G, Maxan A, Kordower JH, Planel E, Freeman TB, Cicchetti F. Presence of tau pathology within foetal neural allografts in patients with Huntington’s and Parkinson’s disease. Brain. 2017;140:2982–92.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vuono R, Winder-Rhodes S, de Silva R, Cisbani G, Drouin-Ouellet J, REGISTRY Investigators of the European Huntington’s Disease Network, et al. The role of tau in the pathological process and clinical expression of Huntington’s disease. Brain. 2015;138:1907–18.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gratuze M, Noël A, Julien C, Cisbani G, Milot-Rousseau P, Morin F, et al. Tau hyperphosphorylation and deregulation of calcineurin in mouse models of Huntington’s disease. Hum Mol Genet. 2015;24:86–99.

    Article  CAS  PubMed  Google Scholar 

  5. Wade-Martins R. Genetics: the MAPT locus—a genetic paradigm in disease susceptibility. Nat Rev Neurol. 2012;8:477–8.

    Article  CAS  PubMed  Google Scholar 

  6. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J. 1989;8:393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol. 2017;133:665–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, et al. Role of tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci. 2019;11:204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robert M, Mathuranath PS. Tau and tauopathies. Neurol India. 2007;55:11.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou L, McInnes J, Wierda K, Holt M, Herrmann AG, Jackson RJ, et al. Tau association with synaptic vesicles causes presynaptic dysfunction. Nat Commun. 2017;8:15295.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sebastián-Serrano Á, De Diego-García L, Díaz-Hernández M. The neurotoxic role of extracellular tau protein. Int J Mol Sci. 2018;19:998.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, Eersel J, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–97.

    Article  CAS  PubMed  Google Scholar 

  13. Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011;58:458–71.

    Article  CAS  PubMed  Google Scholar 

  14. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3:519–26.

    Article  CAS  PubMed  Google Scholar 

  15. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev. 2000;33:95–130.

    Article  PubMed  Google Scholar 

  16. Kumar A, Sidhu J, Goyal A, Tsao JW. Alzheimer disease. In: StatPearls [Internet]. StatPearls Publishing; 2022.

  17. Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B, et al. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol. 2001;58:373–9.

    Article  CAS  PubMed  Google Scholar 

  18. Galasko D. Cerebrospinal fluid levels of Aβ42 and tau: potential markers of Alzheimer’s disease. In: Jellinger K, Fazekas F, Windisch M, editors. Ageing and dementia. Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, vol. 53). Vienna: Springer; 1998. https://doi.org/10.1007/978-3-7091-6467-9_19.

  19. Vigo-Pelfrey C, Seubert PP, Barbour R, Blomquist C, Lee M, Lee D, et al. Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer’s disease. Neurology. 1995;45:788–93.

    Article  CAS  PubMed  Google Scholar 

  20. Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, et al. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry. 2019;24:1112–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57:208–14.

    Article  CAS  PubMed  Google Scholar 

  22. Villemagne VL, Doré V, Bourgeat P, Burnham SC, Laws S, Salvado O, et al. Aβ-amyloid and tau imaging in dementia. Semin Nucl Med. 2017;47:75–88.

    Article  PubMed  Google Scholar 

  23. Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108.

    Article  CAS  PubMed  Google Scholar 

  24. Lockhart SN, Baker SL, Okamura N, Furukawa K, Ishiki A, Furumoto S, et al. Dynamic PET measures of tau accumulation in cognitively normal older adults and Alzheimer’s disease patients measured using [18F] THK-5351. PLoS ONE. 2016;11:e0158460.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Aguero C, Dhaynaut M, Normandin MD, Amaral AC, Guehl NJ, Neelamegam R, et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun. 2019;7:37.

  26. Wong DF, Comley RA, Kuwabara H, Rosenberg PB, Resnick SM, Ostrowitzki S, et al. Characterization of 3 novel tau radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in healthy controls and in Alzheimer subjects. J Nucl Med. 2018;59:1869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Betthauser TJ, Cody KA, Zammit MD, Murali D, Converse AK, Barnhart TE, et al. In vivo characterization and quantification of neurofibrillary tau PET radioligand 18F-MK-6240 in humans from Alzheimer disease dementia to young controls. J Nucl Med. 2019;60:93–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leuzy A, Pascoal TA, Strandberg O, Insel P, Smith R, Mattsson-Carlgren N, et al. A multicenter comparison of [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau PET tracers to detect a common target ROI for differential diagnosis. Eur J Nucl Med Mol Imaging. 2021;48:2295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harada R, Ishiki A, Kai H, Sato N, Furukawa K, Furumoto S, et al. Correlations of 18F-THK5351 PET with postmortem burden of tau and astrogliosis in Alzheimer disease. J Nucl Med. 2018;59:671–4.

    Article  CAS  PubMed  Google Scholar 

  30. Marquié M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78:787–800.

  31. Shcherbinin S, Schwarz AJ, Joshi A, Navitsky M, Flitter M, Shankle WR, et al. Kinetics of the tau PET tracer 18F-AV-1451 (T807) in subjects with normal cognitive function, mild cognitive impairment, and Alzheimer disease. J Nucl Med. 2016;57:1535–42.

    Article  CAS  PubMed  Google Scholar 

  32. Xia C, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, et al. [18 F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement. 2013;9:666–76.

    Article  PubMed  Google Scholar 

  33. Tagai K, Ono M, Kubota M, Kitamura S, Takahata K, Seki C, et al. High-contrast in vivo imaging of tau pathologies in Alzheimer’s and non-Alzheimer’s disease tauopathies. Neuron. 2021;109:42–58.e8.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau PET imaging in aging and early Alzheimer’s disease. Ann Neurol. 2016;79:110–9.

    Article  PubMed  Google Scholar 

  35. Phillips JS, Das SR, McMillan CT, Irwin DJ, Roll EE, Da Re F, et al. Tau PET imaging predicts cognition in atypical variants of Alzheimer’s disease. Hum Brain Mapp. 2017;39:691–708.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hall B, Mak E, Cervenka S, Aigbirhio FI, Rowe JB, O’Brien JT. In vivo tau PET imaging in dementia: pathophysiology, radiotracer quantification, and a systematic review of clinical findings. Ageing Res Rev. 2017;36:50–63.

    Article  CAS  PubMed  Google Scholar 

  37. Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016;139:1551–67.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pontecorvo MJ, Devous MD, Kennedy I, Navitsky M, Lu M, Galante N, et al. A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer’s disease dementia. Brain. 2019;142:1723–35.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Devous MD Sr, Fleisher AS, Pontecorvo MJ, Lu M, Siderowf A, Navitsky M, et al. Relationships between cognition and neuropathological tau in Alzheimer’s disease assessed by 18F flortaucipir PET. J Alzheimers Dis. 2021;80:1091–104.

    Article  PubMed  Google Scholar 

  40. Lagarde J, Olivieri P, Tonietto M, Tissot C, Rivals I, Gervais P, et al. Tau-PET imaging predicts cognitive decline and brain atrophy progression in early Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2022;93:459–67.

    Article  PubMed  Google Scholar 

  41. Bejanin A, Schonhaut DR, La Joie R, Kramer JH, Baker SL, Sosa N, et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain. 2017;140:3286–300.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gordon BA, Blazey TM, Christensen J, Dincer A, Flores S, Keefe S, et al. Tau PET in autosomal dominant Alzheimer’s disease: relationship with cognition, dementia and other biomarkers. Brain. 2019;142:1063–76.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lu J, Bao W, Li M, Li L, Zhang Z, Alberts I, et al. Associations of [18F]-APN-1607 tau PET binding in the brain of Alzheimer’s disease patients with cognition and glucose metabolism. Front Neurosci. 2020;14:604.

  44. Chen SD, Lu JY, Li HQ, Yang YX, Jiang JH, Cui M, et al. Staging tau pathology with tau PET in Alzheimer’s disease: a longitudinal study. Transl Psychiatry. 2021;11:483.

  45. Xia C, Makaretz SJ, Caso C, McGinnis S, Gomperts SN, Sepulcre J, et al. Association of in vivo [18F]AV-1451 tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA Neurol. 2017;74:427–36.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cho H, Choi JY, Hwang MS, Lee JH, Kim YJ, Lee HM, et al. Tau PET in Alzheimer disease and mild cognitive impairment. Neurology. 2016;87:375–83.

    Article  CAS  PubMed  Google Scholar 

  47. Nasrallah IM, Chen YJ, Hsieh MK, Phillips JS, Ternes K, Stockbower GE, et al. 18F-Flortaucipir PET/MRI correlations in nonamnestic and amnestic variants of Alzheimer disease. J Nucl Med. 2018;59:299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu M, Pontecorvo MJ, Devous MD, Arora AK, Galante N, McGeehan A, et al. Aggregated tau measured by visual interpretation of flortaucipir positron emission tomography and the associated risk of clinical progression of mild cognitive impairment and Alzheimer disease. JAMA Neurol. 2021;78:445–53.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhao Q, Liu M, Ha L, Zhou Y, Weiner MW, Alzheimer’s Disease Neuroimaging Initiative, et al. Quantitative 18F-AV1451 brain tau PET imaging in cognitively normal older adults, mild cognitive impairment, and Alzheimer’s disease patients. Front Neurol. 2019;10:486.

  50. Timmers T, Ossenkoppele R, Wolters EE, Verfaillie SCJ, Visser D, Golla SSV, et al. Associations between quantitative [18F]flortaucipir tau PET and atrophy across the Alzheimer’s disease spectrum. Alzheimers Res Ther. 2019;11:60.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bucci M, Chiotis K, Nordberg A. Alzheimer’s disease profiled by fluid and imaging markers: tau PET best predicts cognitive decline. Mol Psychiatry. 2021;26:5888–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Biel D, Brendel M, Rubinski A, Buerger K, Janowitz D, Dichgans M, et al. Tau-PET and in vivo Braak-staging as prognostic markers of future cognitive decline in cognitively normal to demented individuals. Alzheimers Res Ther. 2021;13:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ossenkoppele R, Smith R, Mattsson-Carlgren N, Groot C, Leuzy A, Strandberg O, et al. Accuracy of tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imaging. JAMA Neurol. 2021;78:961–71.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Maass A, Landau S, Baker SL, Horng A, Lockhart SN, La Joie R, et al. Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer’s disease. Neuroimage. 2017;157:448–63.

    Article  CAS  PubMed  Google Scholar 

  55. Biel D, Luan Y, Brendel M, Hager P, Dewenter A, Moscoso A, et al. Combining tau-PET and fMRI meta-analyses for patient-centered prediction of cognitive decline in Alzheimer’s disease. Alzheimers Res Ther. 2022;14:166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mattsson N, Insel PS, Donohue M, Jögi J, Ossenkoppele R, Olsson T, et al. Predicting diagnosis and cognition with 18F-AV-1451 tau PET and structural MRI in Alzheimer’s disease. Alzheimers Dement. 2019;15:570–80.

    Article  PubMed  Google Scholar 

  57. Koychev I, Gunn RN, Firouzian A, Lawson J, Zamboni G, Ridha B, et al. PET tau and amyloid-β burden in mild Alzheimer’s disease: divergent relationship with age, cognition, and cerebrospinal fluid biomarkers. J Alzheimers Dis. 2017;60:283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. La Joie R, Visani AV, Baker SL, Brown JA, Bourakova V, Cha J, et al. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci Transl Med. 2020;12:eaau5732.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schöll M, Ossenkoppele R, Strandberg O, Palmqvist S, Jögi J, The Swedish BioFINDER study, et al. Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer’s disease. Brain. 2017;140:2286–94.

  60. Schöll M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of tau deposition in the aging human brain. Neuron. 2016;89:971–82.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jack CR, Wiste HJ, Schwarz CG, Lowe VJ, Senjem ML, Vemuri P, et al. Longitudinal tau PET in ageing and Alzheimer’s disease. Brain. 2018;141:1517–28.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang L, Benzinger TL, Su Y, Christensen J, Friedrichsen K, Aldea P, et al. Evaluation of Tau imaging in staging Alzheimer disease and revealing interactions between β-amyloid and tauopathy. JAMA Neurol. 2016;73:1070–7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kinahan PE, Fletcher JW. PET/CT standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31:496–505.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9:25.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14:225–36.

    Article  CAS  PubMed  Google Scholar 

  66. Arai H, Terajima M, Miura M, Higuchi S, Muramatsu T, Machida N, et al. Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer’s disease. Ann Neurol. 1995;38:649–52.

    Article  CAS  PubMed  Google Scholar 

  67. Jensen M, Basun H, Lannfelt L. Increased cerebrospinal fluid tau in patients with Alzheimer’s disease. Neurosci Lett. 1995;186:189–91.

    Article  CAS  PubMed  Google Scholar 

  68. Seppälä TT, Koivisto AM, Hartikainen P, Helisalmi S, Soininen H, Herukka SK. Longitudinal changes of CSF biomarkers in Alzheimer’s disease. J Alzheimers Dis. 2011;25:583–94.

    Article  PubMed  Google Scholar 

  69. Vandermeeren M, Mercken M, Vanmechelen E, Six J, Van de Voorde A, Martin JJ, et al. Detection of proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J Neurochem. 1993;61:1828–34.

    Article  CAS  PubMed  Google Scholar 

  70. Rozenstein-Tsalkovich L, Kahana E, Shenker A, Baitcher F, Cohen O, Kahana-Merhavi S, et al. CSF tau protein in Alzheimer’s disease and other neurological and psychiatric diseases. Austin Alzheimers J Parkinsons Dis. 2014;1:10.

    Google Scholar 

  71. Sunderland T, Mirza N, Putnam KT, Linker G, Bhupali D, Durham R, et al. Cerebrospinal fluid β-amyloid1–42 and tau in control subjects at risk for Alzheimer’s disease: the effect of APOE ε4 allele. Biol Psychiatry. 2004;56:670–6.

    Article  CAS  PubMed  Google Scholar 

  72. Ibach B, Binder H, Dragon M, Poljansky S, Haen E, Schmitz E, et al. Cerebrospinal fluid tau and β-amyloid in Alzheimer patients, disease controls and an age-matched random sample. Neurobiol Aging. 2006;27:1202–11.

    Article  CAS  PubMed  Google Scholar 

  73. Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH, et al. Decreased β-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. J Am Med Assoc. 2003;289:2094–103.

    Article  Google Scholar 

  74. Kandimalla RJL, Prabhakar S, Wani WY, Kaushal A, Gupta N, Sharma DR, et al. CSF p-Tau levels in the prediction of Alzheimer’s disease. Biol Open. 2013;2:1119–24.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ye LQ, Li XY, Zhang YB, Cheng HR, Ma Y, Chen DF, et al. The discriminative capacity of CSF β-amyloid 42 and tau in neurodegenerative diseases in the Chinese population. J Neurol Sci. 2020;412:116756.

    Article  CAS  PubMed  Google Scholar 

  76. Mecocci P, Cherubini A, Bregnocchi M, Chionne F, Cecchetti R, Lowenthal DT, et al. Tau protein in cerebrospinal fluid: a new diagnostic and prognostic marker in Alzheimer disease? Alzheimer Dis Assoc Disord. 1998;12:211–4.

    Article  CAS  PubMed  Google Scholar 

  77. Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol. 1995;26:231–45.

    Article  CAS  PubMed  Google Scholar 

  78. Clark CM, Xie S, Chittams J, Ewbank D, Peskind E, Galasko D, et al. Cerebrospinal fluid tau and β-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol. 2003;60:1696–702.

    Article  PubMed  Google Scholar 

  79. Magalhães CA, Figueiró M, Fraga VG, Mateo EC, Toledo AASF, Carvalho MDG, et al. Cerebrospinal fluid biomarkers for the differential diagnosis of Alzheimer’s disease. J Bras Patol Med Lab. 2015;51:376–82.

    Article  Google Scholar 

  80. Parnetti L, Lanari A, Amici S, Gallai V, Vanmechelen E, Hulstaert F, et al. CSF phosphorylated tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Phospho-Tau International Study Group. Neurol Sci. 2001;22:77–8.

    Article  CAS  PubMed  Google Scholar 

  81. Hampel H, Buerger K, Zinkowski R, Teipel SJ, Goernitz A, Andreasen N, et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry. 2004;61:95–102.

    Article  CAS  PubMed  Google Scholar 

  82. Kasuga K, Tokutake T, Ishikawa A, Uchiyama T, Tokuda T, Onodera O, et al. Differential levels of α-synuclein, β-amyloid42 and tau in CSF between patients with dementia with Lewy bodies and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2010;81:608–10.

    Article  PubMed  Google Scholar 

  83. Tato RE, Frank A, Hernanz A. Tau protein concentrations in cerebrospinal fluid of patients with dementia of the Alzheimer type. J Neurol Neurosurg Psychiatry. 1995;59:280–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Alcolea D, Carmona-Iragui M, Suárez-Calvet M, Sánchez-Saudinós MB, Sala I, Antón-Aguirre S, et al. Relationship between β-secretase, inflammation and core cerebrospinal fluid biomarkers for Alzheimer’s disease. J Alzheimers Dis. 2014;42:157–67.

    Article  CAS  PubMed  Google Scholar 

  85. Vanderstichele H, Vreese KD, Blennow K, Andreasen N, Sindic C, Ivanoiu A, et al. Analytical performance and clinical utility of the INNOTEST® PHOSPHO-TAU(181P) assay for discrimination between Alzheimer’s disease and dementia with Lewy bodies. Clin Chem Lab Med. 2006;44:1472–80.

    Article  CAS  PubMed  Google Scholar 

  86. Kurz A, Riemenschneider M, Buch K, Willoch F, Bartenstein P, Müller U, et al. Tau protein in cerebrospinal fluid is significantly increased at the earliest clinical stage of Alzheimer disease. Alzheimer Dis Assoc Disord. 1998;12:372–7.

    Article  CAS  PubMed  Google Scholar 

  87. McDade E, Wang G, Gordon BA, Hassenstab J, Benzinger TLS, Buckles V, et al. Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease. Neurology. 2018;91:e1295–306.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Almeida RP, Schultz SA, Austin BP, Boots EA, Dowling NM, Gleason CE, et al. Effect of cognitive reserve on age-related changes in cerebrospinal fluid biomarkers of Alzheimer disease. JAMA Neurol. 2015;72:699–706.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H, et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol. 2009;66:382–9.

    Article  PubMed  Google Scholar 

  91. Fortea J, Vilaplana E, Alcolea D, Carmona-Iragui M, Sánchez-Saudinos MB, Sala I, et al. Cerebrospinal fluid β-amyloid and phospho-tau biomarker interactions affecting brain structure in preclinical Alzheimer disease. Ann Neurol. 2014;76:223–30.

    Article  CAS  PubMed  Google Scholar 

  92. Palmqvist S, Insel PS, Stomrud E, Janelidze S, Zetterberg H, Brix B, et al. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol Med. 2019;11:e11170.

  93. Thomann PA, Kaiser E, Schönknecht P, Pantel J, Essig M, Schröder J. Association of total tau and phosphorylated tau 181 protein levels in cerebrospinal fluid with cerebral atrophy in mild cognitive impairment and Alzheimer disease. J Psychiatry Neurosci. 2009;34:136–42.

    PubMed  PubMed Central  Google Scholar 

  94. Li X, Li TQ, Andreasen N, Wiberg MK, Westman E, Wahlund LO. The association between biomarkers in cerebrospinal fluid and structural changes in the brain in patients with Alzheimer’s disease. J Intern Med. 2014;275:418–27.

    Article  CAS  PubMed  Google Scholar 

  95. Seppälä TT, Nerg O, Koivisto AM, Rummukainen J, Puli L, Zetterberg H, et al. CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology. 2012;78:1568–75.

    Article  PubMed  Google Scholar 

  96. Fagan AM, Mintun MA, Shah AR, Aldea P, Roe CM, Mach RH, et al. Cerebrospinal fluid tau and ptau181 increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Mol Med. 2009;1:371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buerger K, Ewers M, Pirttilä T, Zinkowski R, Alafuzoff I, Teipel SJ, et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain. 2006;129:3035–41.

    Article  PubMed  Google Scholar 

  98. Herukka SK, Pennanen C, Soininen H, Pirttilä T. P2–140: cerebrospinal fluid Aβ42, tau and phosphorylated tau correlate with hippocampal atrophy. Alzheimers Dement. 2006;2:S274.

    Article  Google Scholar 

  99. Wallin ÅK, Blennow K, Zetterberg H, Londos E, Minthon L, Hansson O. CSF biomarkers predict a more malignant outcome in Alzheimer disease. Neurology. 2010;74:1531–7.

    Article  CAS  PubMed  Google Scholar 

  100. Blom ES, Giedraitis V, Zetterberg H, Fukumoto H, Blennow K, Hyman BT, et al. Rapid progression from mild cognitive impairment to Alzheimer’s disease in subjects with elevated levels of tau in cerebrospinal fluid and the APOE epsilon4/epsilon4 genotype. Dement Geriatr Cogn Disord. 2009;27:458–64.

    Article  CAS  PubMed  Google Scholar 

  101. Buchhave P, Minthon L, Zetterberg H, Wallin ÅK, Blennow K, Hansson O. Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry. 2012;69:98–106.

    Article  CAS  PubMed  Google Scholar 

  102. Ewers M, Buerger K, Teipel SJ, Scheltens P, Schroder J, Zinkowski RP, et al. Multicenter assessment of CSF-phosphorylated tau for the prediction of conversion of MCI. Neurology. 2007;69:2205–12.

    Article  CAS  PubMed  Google Scholar 

  103. Stefani A, Martorana A, Bernardini S, Panella M, Mercati F, Orlacchio A, et al. CSF markers in Alzheimer disease patients are not related to the different degree of cognitive impairment. J Neurol Sci. 2006;251:124–8.

    Article  CAS  PubMed  Google Scholar 

  104. Maccioni RB, Lavados M, Guillón M, Mujica C, Bosch R, Farías G, et al. Anomalously phosphorylated tau and Aβ fragments in the CSF correlates with cognitive impairment in MCI subjects. Neurobiol Aging. 2006;27:237–44.

    Article  CAS  PubMed  Google Scholar 

  105. Lavados M, Farías G, Rothhammer F, Guillon M, Mujica MC, Maccioni C, et al. ApoE alleles and tau markers in patients with different levels of cognitive impairment. Arch Med Res. 2005;36:474–9.

    Article  CAS  PubMed  Google Scholar 

  106. Hampel H, Teipel SJ, Fuchsberger T, Andreasen N, Wiltfang J, Otto M, et al. Value of CSF β-amyloid 1–42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairment. Mol Psychiatry. 2004;9:705–10.

    Article  CAS  PubMed  Google Scholar 

  107. Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 2009;302:385–93.

    Article  CAS  PubMed  Google Scholar 

  108. Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A, Kurz A. Cerebrospinal fluid tau and β-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch Neurol. 2002;59:1729–34.

    Article  CAS  PubMed  Google Scholar 

  109. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65:403–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Parnetti L, Chiasserini D, Eusebi P, Giannandrea D, Bellomo G, De Carlo C, et al. Performance of Aβ 1-40, Aβ 1-42, total tau, and phosphorylated tau as predictors of dementia in a cohort of patients with mild cognitive impairment. J Alzheimers Dis. 2012;29:229–38.

    Article  CAS  PubMed  Google Scholar 

  111. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology. 2009;73:294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brys M, Pirraglia E, Rich K, Rolstad S, Mosconi L, Switalski R, et al. Prediction and longitudinal study of CSF biomarkers in mild cognitive impairment. Neurobiol Aging. 2009;30:682–90.

    Article  CAS  PubMed  Google Scholar 

  113. Molina L, Touchon J, Herpé M, Lefranc D, Duplan L, Cristol JP, et al. Tau and apo E in CSF: potential aid for discriminating Alzheimer’s disease from other dementias. NeuroReport. 1999;10:3491.

    Article  CAS  PubMed  Google Scholar 

  114. De Riva V, Galloni E, Marcon M, Di Dionisio L, Deluca C, Meligrana L, et al. Analysis of combined CSF biomarkers in AD diagnosis. Clin Lab. 2014;60:629–34.

    Article  PubMed  Google Scholar 

  115. Pichet Binette A, Franzmeier N, Spotorno N, Ewers M, Brendel M, Biel D, et al. Amyloid-associated increases in soluble tau relate to tau aggregation rates and cognitive decline in early Alzheimer’s disease. Nat Commun. 2022;13:6635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Meredith JEJ, Sankaranarayanan S, Guss V, Lanzetti AJ, Berisha F, Neely RJ, et al. Characterization of novel CSF tau and ptau biomarkers for Alzheimer’s disease. PLoS ONE. 2013;8:e76523.

    Article  CAS  PubMed  Google Scholar 

  117. Cicognola C, Brinkmalm G, Wahlgren J, Portelius E, Gobom J, Cullen NC, et al. Novel tau fragments in cerebrospinal fluid: relation to tangle pathology and cognitive decline in Alzheimer’s disease. Acta Neuropathol. 2019;137:279–96.

    Article  CAS  PubMed  Google Scholar 

  118. van Harten AC, Wiste HJ, Weigand SD, Mielke MM, Kremers WK, Eichenlaub U, et al. Detection of Alzheimer’s disease amyloid beta 1-42, p-tau, and t-tau assays. Alzheimers Dement. 2022;18:635–44.

    Article  PubMed  Google Scholar 

  119. Skillbäck T, Farahmand BY, Rosén C, Mattsson N, Nägga K, Kilander L, et al. Cerebrospinal fluid tau and amyloid-β1-42 in patients with dementia. Brain. 2015;138:2716–31.

    Article  PubMed  Google Scholar 

  120. Barthélemy NR, Mallipeddi N, Moiseyev P, Sato C, Bateman RJ. Tau phosphorylation rates measured by mass spectrometry differ in the intracellular brain vs. extracellular cerebrospinal fluid compartments and are differentially affected by Alzheimer’s disease. Front Aging Neurosci. 2019;11:121.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Barthélemy NR, Li Y, Joseph-Mathurin N, Gordon BA, Hassenstab J, Benzinger TLS, et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat Med. 2020;26:398–407.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Arai H, Blennow K, et al. Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol. 2002;59:1267–72.

    Article  PubMed  Google Scholar 

  123. Kiđemet-Piskač S, Babić Leko M, Blažeković A, Langer Horvat L, Klepac N, Sonicki Z, et al. Evaluation of cerebrospinal fluid phosphorylated tau231 as a biomarker in the differential diagnosis of Alzheimer’s disease and vascular dementia. CNS Neurosci Ther. 2018;24:734–40.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ashton NJ, Benedet AL, Pascoal TA, Karikari TK, Lantero-Rodriguez J, Brum WS, et al. Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer’s disease. eBioMedicine. 2022;76:103836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lewczuk P, Lelental N, Lachmann I, Holzer M, Flach K, Brandner S, et al. Non-phosphorylated tau as a potential biomarker of Alzheimer’s disease: analytical and diagnostic characterization. J Alzheimers Dis. 2017;55:159–70.

    Article  CAS  PubMed  Google Scholar 

  126. Suárez-Calvet M, Karikari TK, Ashton NJ, Lantero Rodríguez J, Milà-Alomà M, Gispert JD, et al. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Aβ pathology are detected. EMBO Mol Med. 2020;12:e12921.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Tatebe H, Kasai T, Ohmichi T, Kishi Y, Kakeya T, Waragai M, et al. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Mol Neurodegener. 2017;12:63.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Janelidze S, Stomrud E, Smith R, Palmqvist S, Mattsson N, Airey DC, et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat Commun. 2020;11:1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lantero-Rodriguez J, Snellman A, Benedet AL, Milà-Alomà M, Camporesi E, Montoliu-Gaya L, et al. P-tau235: a novel biomarker for staging preclinical Alzheimer’s disease. EMBO Mol Med. 2021;13:e15098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. La Joie R, Bejanin A, Fagan AM, Ayakta N, Baker SL, Bourakova V, et al. Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample. Neurology. 2018;90:E282–90.

    PubMed  PubMed Central  Google Scholar 

  131. Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Sci Transl Med. 2016;8:338ra66.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gordon BA, Friedrichsen K, Brier M, Blazey T, Su Y, Christensen J, et al. The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging. Brain. 2016;139:2249–60.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Meyer PF, Pichet Binette A, Gonneaud J, Breitner JCS, Villeneuve S, ADNI Investigators. Characterization of Alzheimer disease biomarker discrepancies using cerebrospinal fluid phosphorylated tau and AV1451 positron emission tomography. JAMA Neurol. 2020;77:508–16.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wolters EE, Ossenkoppele R, Verfaillie SCJ, Coomans EM, Timmers T, Visser D, et al. Regional [18F]flortaucipir PET is more closely associated with disease severity than CSF p-tau in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2020;47:2866–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mohammadi Z, Alizadeh H, Marton J, Cumming P. The sensitivity of tau tracers for the discrimination of Alzheimer’s disease patients and healthy controls by PET. Biomolecules. 2023;13:290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mielke MM, Hagen CE, Xu J, Chai X, Vemuri P, Lowe VJ, et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau-PET and amyloid-PET. Alzheimers Dement. 2018;14:989–97.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Smith R, Cullen NC, Pichet Binette A, Leuzy A, Blennow K, Zetterberg H, et al. Tau-PET is superior to phospho-tau when predicting cognitive decline in symptomatic AD patients. Alzheimers Dement. 2023;19:2497–507.

    Article  CAS  PubMed  Google Scholar 

  138. Chiu M, Chen Y, Chen T, Yang S, Yang FG, Tseng T, et al. Plasma tau as a window to the brain—negative associations with brain volume and memory function in mild cognitive impairment and early Alzheimer’s disease. Hum Brain Mapp. 2013;35:3132–42.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Karikari TK, Pascoal TA, Ashton NJ, Janelidze S, Benedet AL, Rodriguez JL, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–33.

    Article  CAS  PubMed  Google Scholar 

  140. Thijssen EH, La Joie R, Wolf A, Strom A, Wang P, Iaccarino L, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med. 2020;26:387–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Janelidze S, Mattsson N, Palmqvist S, Smith R, Beach TG, Serrano GE, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med. 2020;26:379–86.

    Article  CAS  PubMed  Google Scholar 

  142. Barthélemy NR, Horie K, Sato C, Bateman RJ. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med. 2020;217:e20200861.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Janelidze S, Palmqvist S, Quiroz YT, Lopera F, Stomrud E, Su Y, et al. Phospho-tau217 and phospho-tau181 in plasma and CSF as biomarkers for Alzheimer’s disease. Alzheimers Dement. 2020;16:e037520.

    Article  Google Scholar 

  144. Ashton NJ, Janelidze S, Mattsson-Carlgren N, Binette AP, Strandberg O, Brum WS, et al. Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nat Med. 2022;28:2555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ashton NJ, Pascoal TA, Karikari TK, Benedet AL, Lantero-Rodriguez J, Brinkmalm G, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 2021;141:709–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, et al. Plasma tau levels in Alzheimer’s disease. Alzheimers Res Ther. 2013;5:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zetterberg H. Review: Tau in biofluids—relation to pathology, imaging and clinical features. Neuropathol Appl Neurobiol. 2017;43:194–9.

    Article  CAS  PubMed  Google Scholar 

  148. Mielke MM, Hagen CE, Wennberg AMV, Airey DC, Savica R, Knopman DS, et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the Mayo Clinic Study on Aging. JAMA Neurol. 2017;74:1073–80.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yang SY, Chiu MJ, Chen TF, Lin CH, Jeng JS, Tang SC, et al. Analytical performance of reagent for assaying tau protein in human plasma and feasibility study screening neurodegenerative diseases. Sci Rep. 2017;7:9304.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Shanthi KB, Krishnan S, Rani P. A systematic review and meta-analysis of plasma amyloid 1-42 and tau as biomarkers for Alzheimer’s disease. SAGE Open Med. 2015;3:2050312115598250.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Mitchell AJ. CSF phosphorylated tau in the diagnosis and prognosis of mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 51 studies. J Neurol Neurosurg Psychiatry. 2009;80:966–75.

    Article  CAS  PubMed  Google Scholar 

  152. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15:673–84.

    Article  CAS  PubMed  Google Scholar 

  153. Zou K, Abdullah M, Michikawa M. Current biomarkers for Alzheimer’s disease: from CSF to blood. J Pers Med. 2020;10:85.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ashton NJ, Puig-Pijoan A, Milà-Alomà M, Fernández-Lebrero A, García-Escobar G, González-Ortiz F, et al. Plasma and CSF biomarkers in a memory clinic: head-to-head comparison of phosphorylated tau immunoassays. Alzheimers Dement. 2023;19:1913–24.

    Article  CAS  PubMed  Google Scholar 

  155. Fossati S, Ramos Cejudo J, Debure L, Pirraglia E, Sone JY, Li Y, et al. Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer’s disease. Alzheimers Dement. 2019;11:483–92.

    Google Scholar 

  156. Ossenkoppele R, Reimand J, Smith R, Leuzy A, Strandberg O, Palmqvist S, et al. Tau PET correlates with different Alzheimer’s disease-related features compared to CSF and plasma p-tau biomarkers. EMBO Mol Med. 2021;13:e14398.

  157. Tissot C, Kunach P, Therriault J, Lussier FZ, Benedet AL, Chamoun M, et al. Discrepancy between plasma pTau181 and tau-PET statuses. Alzheimers Dement. 2021;17:e055515.

    Article  Google Scholar 

  158. Nam E, Lee YB, Moon C, Chang KA. Serum tau proteins as potential biomarkers for the assessment of alzheimer’s disease progression. Int J Mol Sci. 2020;21:1–20.

    Article  Google Scholar 

  159. Kac PR, Gonzalez-Ortiz F, Simrén J, Dewit N, Vanmechelen E, Zetterberg H, et al. Diagnostic value of serum versus plasma phospho-tau for Alzheimer’s disease. Alzheimers Res Ther. 2022;14:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kvetnoy IM, Hernandez-Yago J, Kvetnaia TV, Kh V, Malinin VV, Yarilin AA, et al. Tau-protein expression in human blood lymphocytes: a promising marker. Neuroendocrinol Lett. 2000;21:313–8.

    CAS  PubMed  Google Scholar 

  161. Neumann K, Farías G, Slachevsky A, Perez P, Maccioni RB. Human platelets tau: a potential peripheral marker for Alzheimer’s disease. J Alzheimers Dis. 2011;25:103–9.

    Article  CAS  PubMed  Google Scholar 

  162. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement. 2015;11:600–7.e1.

    Article  PubMed  Google Scholar 

  163. Winston CN, Goetzl EJ, Akers JC, Carter BS, Rockenstein EM, Galasko D, et al. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimers Dement. 2016;3:63–72.

    Google Scholar 

  164. Guix FX, Corbett GT, Cha DJ, Mustapic M, Liu W, Mengel D, et al. Detection of aggregation-competent tau in neuron-derived extracellular vesicles. Int J Mol Sci. 2018;19:663.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Hattori H, Matsumoto M, Iwai K, Tsuchiya H, Miyauchi E, Takasaki M, et al. The τ protein of oral epithelium increases in Alzheimer’s disease. J Gerontol Ser A 2002;57:M64–70.

    Article  Google Scholar 

  166. Arredondo LF, Aranda-Romo S, Rodríguez-Leyva I, Chi-Ahumada E, Saikaly SK, Portales-Pérez DP, et al. Tau protein in oral mucosa and cognitive state: a cross-sectional study. Front Neurol. 2017;8:554.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Shi M, Sui YT, Peskind ER, Li G, Hwang H, Devic I, et al. Salivary tau species are potential biomarkers of Alzheimer disease. J Alzheimers Dis. 2011;27:299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Farah R, Haraty H, Salame Z, Fares Y, Ojcius DM, Sadier NS, et al. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed J. 2018;41:63–87.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Ashton NJ, Ide M, Schöll M, Blennow K, Lovestone S, Hye A, et al. No association of salivary total tau concentration with Alzheimer’s disease. Neurobiol Aging. 2018;70:125–7.

    Article  CAS  PubMed  Google Scholar 

  170. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.

    Article  CAS  PubMed  Google Scholar 

  171. Fang C, Lv L, Mao S, Dong H, Liu B. Cognition deficits in Parkinson’s disease: mechanisms and treatment. Parkinsons Dis. 2020;2020:2076942.

    PubMed  PubMed Central  Google Scholar 

  172. Zabetian CP, Hutter CM, Factor SA, Nutt JG, Higgins DS, Griffith A, et al. Association analysis of MAPT H1 haplotype and subhaplotypes in Parkinson’s disease. Ann Neurol. 2007;62:137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Morley JF, Xie SX, Hurtig HI, Stern MB, Colcher A, Horn S, et al. Genetic influences on cognitive decline in Parkinson’s disease. Mov Disord. 2012;27:512–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Goris A, Williams-Gray CH, Clark GR, Foltynie T, Lewis SJG, Brown J, et al. Tau and α-synuclein in susceptibility to, and dementia in, Parkinson’s disease. Ann Neurol. 2007;62:145–53.

    Article  CAS  PubMed  Google Scholar 

  175. Setó-Salvia N, Clarimón J, Pagonabarraga J, Pascual-Sedano B, Campolongo A, Combarros O, et al. Dementia risk in Parkinson disease: disentangling the role of MAPT haplotypes. Arch Neurol. 2011;68:359–64.

    Article  PubMed  Google Scholar 

  176. Smith BR, Nelson KM, Kemper LJ, Leinonen-Wright K, Petersen A, Keene CD, et al. A soluble tau fragment generated by caspase-2 is associated with dementia in Lewy body disease. Acta Neuropathol Commun 2019;7:124.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Duda JE, Giasson BI, Mabon ME, Miller DC, Golbe LI, Lee VMY, et al. Concurrence of α-synuclein and tau brain pathology in the Contursi kindred. Acta Neuropathol. 2002;104:7–11.

    Article  CAS  PubMed  Google Scholar 

  178. Schonhaut DR, McMillan CT, Spina S, Dickerson BC, Siderowf A, Devous MD, et al. 18F-flortaucipir tau PET distinguishes established progressive supranuclear palsy from controls and Parkinson’s disease: a multicenter study. Ann Neurol. 2017;82:622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gomperts S, Locascio JJ, Makaretz SJ, Schultz A, Caso C, Vasdev N, et al. Tau PET imaging in the Lewy body diseases. JAMA Neurol. 2016;73:1334–41.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Hansen AK, Knudsen K, Lillethorup TP, Landau AM, Parbo P, Fedorova T, et al. In vivo imaging of neuromelanin in Parkinson’s disease using 18F-AV-1451 PET. Brain. 2016;139:2039–49.

    Article  PubMed  Google Scholar 

  181. Coakeley S, Cho SS, Koshimori Y, Rusjan P, Ghadery C, Kim J, et al. [18F]AV-1451 binding to neuromelanin in the substantia nigra in PD and PSP. Brain Struct Funct. 2018;223:589–95.

    Article  CAS  PubMed  Google Scholar 

  182. Marquie M, Verwer E, Meltzer A, Kim S, Aguero C, Gonzalez J, et al. Lessons learned about [F-18]-AV-1451 off-target binding from an autopsy-confirmed Parkinson’s case. Acta Neuropathol Commun. 2017;5:75.

  183. Hansen AK, Parbo P, Ismail R, Østergaard K, Brooks DJ, Borghammer P. Tau tangles in Parkinson’s disease: a 2-year follow-up flortaucipir PET study. J Parkinsons Dis. 2020;10:161–71.

    Article  PubMed  Google Scholar 

  184. Li CH, Chen TF, Chiu MJ, Yen RF, Shih MC, Lin CH. Integrated 18F-T807 tau PET, structural MRI, and plasma tau in tauopathy neurodegenerative disorders. Front Aging Neurosci. 2021;13:646440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hansen AK, Damholdt MF, Fedorova TD, Knudsen K, Parbo P, Ismail R, et al. In Vivo cortical tau in Parkinson’s disease using 18F-AV-1451 positron emission tomography. Mov Disord. 2017;32:922–7.

    Article  CAS  PubMed  Google Scholar 

  186. Smith R, Schöll M, Londos E, Ohlsson T, Hansson O. 18F-AV-1451 in Parkinson’s disease with and without dementia and in dementia with Lewy bodies. Sci Rep. 2018;8:4717.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Michael J. Fox Foundation for Parkinson’s Research. Assessment of brain tau burden in participants with Parkinson’s disease in the PPMI Study (PPMI Tau PET Imaging). Report No.: NCT04906590. clinicaltrials.gov; 2021.

  188. Tang Y, Li L, Hu T, Jiao F, Han L, Li S, et al. In vivo 18F-florzolotau tau positron emission tomography imaging in Parkinson’s disease dementia. Mov Disord. 2023;38:147–52.

    Article  CAS  PubMed  Google Scholar 

  189. Abbasi N, Mohajer B, Abbasi S, Hasanabadi P, Abdolalizadeh A, Rajimehr R. Relationship between cerebrospinal fluid biomarkers and structural brain network properties in Parkinson’s disease. Mov Disord. 2018;33:431–9.

    Article  CAS  PubMed  Google Scholar 

  190. Kang JH, Mollenhauer B, Coffey CS, Toledo JB, Weintraub D, Galasko DR, et al. CSF biomarkers associated with disease heterogeneity in early Parkinson’s disease: the Parkinson’s Progression Markers Initiative study. Acta Neuropathol. 2016;131:935–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Vranová HP, Mareš J, Nevrlý M, Stejskal D, Zapletalová J, Hluštík P, et al. CSF markers of neurodegeneration in Parkinson’s disease. J Neural Transm. 2010;117:1177–81.

    Article  Google Scholar 

  192. Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Döring F, Trenkwalder C, Schlossmacher MG. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 2011;10:230–40.

    Article  CAS  PubMed  Google Scholar 

  193. Mollenhauer B, Caspell-Garcia CJ, Coffey CS, Taylor P, Shaw LM, Trojanowski JQ, et al. Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls. Neurology. 2017;89:1959–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Maarouf CL, Beach TG, Adler CH, Malek-Ahmadi M, Kokjohn TA, Dugger BN, et al. Quantitative appraisal of ventricular cerebrospinal fluid biomarkers in neuropathologically diagnosed Parkinson’s disease cases lacking Alzheimer’s disease pathology. Biomark Insights. 2013;8:19–28.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Schrag A, Siddiqui UF, Anastasiou Z, Weintraub D, Schott JM. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson’s disease: a cohort study. Lancet Neurol. 2017;16:66–75.

    Article  CAS  PubMed  Google Scholar 

  196. Hall S, Surova Y, Öhrfelt A, Blennow K, Zetterberg H, Hansson O. Longitudinal measurements of cerebrospinal fluid biomarkers in Parkinson’s disease. Mov Disord. 2016;31:898–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kang JH, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, Coffey CS, et al. Association of cerebrospinal fluid β-amyloid 1-42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol. 2013;70:1277–87.

    PubMed  PubMed Central  Google Scholar 

  198. Compta Y, Ezquerra M, Muñoz E, Tolosa E, Valldeoriola F, Rios J, et al. High cerebrospinal tau levels are associated with the rs242557 tau gene variant and low cerebrospinal β-amyloid in Parkinson disease. Neurosci Lett. 2011;487:169–73.

    Article  CAS  PubMed  Google Scholar 

  199. Liu C, Cholerton B, Shi M, Ginghina C, Cain KC, Auinger P, et al. CSF tau and tau/Aβ42 predict cognitive decline in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21:271–6.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Hu X, Yang Y, Gong D. Changes of cerebrospinal fluid Aβ42, t-tau, and p-tau in Parkinson’s disease patients with cognitive impairment relative to those with normal cognition: a meta-analysis. Neurol Sci. 2017;38:1953–61.

    Article  PubMed  Google Scholar 

  201. Pan L, Meng L, He M, Zhang Z. Tau in the pathophysiology of Parkinson’s disease. J Mol Neurosci. 2021;71:2179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Montine TJ, Shi M, Quinn JF, Peskind ER, Craft S, Ginghina C, et al. CSF Aβ42 and tau in Parkinson’s disease with cognitive impairment. Mov Disord. 2010;25:2682–5.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Alves G, Brønnick K, Aarsland D, Blennow K, Zetterberg H, Ballard C, et al. CSF amyloid-β and tau proteins, and cognitive performance, in early and untreated Parkinson’s disease: the Norwegian ParkWest study. J Neurol, Neurosurg Psychiatry. 2010;81:1080–6.

    Article  PubMed  Google Scholar 

  204. Beyer MK, Alves G, Hwang KS, Babakchanian S, Bronnick KS, Chou YY, et al. Cerebrospinal fluid Aβ levels correlate with structural brain changes in Parkinson’s disease. Mov Disord. 2013;28:302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Přikrylová Vranová H, Mareš J, Hluštík P, Nevrlý M, Stejskal D, Zapletalová J, et al. Tau protein and beta-amyloid1-42 CSF levels in different phenotypes of Parkinson’s disease. J Neural Transm. 2012;119:353–62.

    Article  PubMed  Google Scholar 

  206. Mollenhauer B, Trenkwalder C, von Ahsen N, Bibl M, Steinacker P, Brechlin P, et al. Beta-amlyoid 1-42 and tau-protein in cerebrospinal fluid of patients with Parkinson’s disease dementia. Dement Geriatr Cogn Disord. 2006;22:200–8.

    Article  CAS  PubMed  Google Scholar 

  207. Dolatshahi M, Pourmirbabaei S, Kamalian A, Ashraf-Ganjouei A, Yaseri M, Aarabi MH. Longitudinal alterations of alpha-synuclein, amyloid beta, total, and phosphorylated tau in cerebrospinal fluid and correlations between their changes in Parkinson’s disease. Front Neurol. 2018;9:560.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Compta Y, Martí MJ, Ibarretxe-Bilbao N, Junqué C, Valldeoriola F, Muñoz E, et al. Cerebrospinal tau, phospho-tau, and beta-amyloid and neuropsychological functions in Parkinson’s disease. Mov Disord. 2009;24:2203–10.

    Article  PubMed  Google Scholar 

  209. Parnetti L, Tiraboschi P, Lanari A, Peducci M, Padiglioni C, D’Amore C, et al. Cerebrospinal fluid biomarkers in Parkinson’s disease with dementia and dementia with Lewy bodies. Biol Psychiatry. 2008;64:850–5.

    Article  CAS  PubMed  Google Scholar 

  210. Henchcliffe C, Dodel R, Beal MF. Biomarkers of Parkinson’s disease and dementia with Lewy bodies. Prog Neurobiol. 2011;95:601–13.

    Article  CAS  PubMed  Google Scholar 

  211. Gmitterová K, Gawinecka J, Llorens F, Varges D, Valkovič P, Zerr I. Cerebrospinal fluid markers analysis in the differential diagnosis of dementia with Lewy bodies and Parkinson’s disease dementia. Eur Arch Psychiatry Clin Neurosci. 2020;270:461–70.

    Article  PubMed  Google Scholar 

  212. Vranová HP, Hényková E, Kaiserová M, Menšíková K, Vaštík M, Mareš J, et al. Tau protein, beta-amyloid1–42 and clusterin CSF levels in the differential diagnosis of Parkinsonian syndrome with dementia. J Neurol Sci. 2014;343:120–4.

    Article  PubMed  Google Scholar 

  213. Compta Y, Ibarretxe-Bilbao N, Pereira JB, Junqué C, Bargalló N, Tolosa E, et al. Grey matter volume correlates of cerebrospinal markers of Alzheimer-pathology in Parkinson’s disease and related dementia. Parkinsonism Relat Disord. 2012;18:941–7.

    Article  PubMed  Google Scholar 

  214. Lin CH, Yang SY, Horng HE, Yang CC, Chieh JJ, Chen HH, et al. Plasma biomarkers differentiate Parkinson’s disease from atypical Parkinsonism syndromes. Front Aging Neurosci. 2018;10:123.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Batzu L, Rota S, Hye A, Heslegrave A, Trivedi D, Gibson LL, et al. Plasma p-tau181, neurofilament light chain and association with cognition in Parkinson’s disease. NPJ Parkinsons Dis. 2022;8:154.

  216. Busra M, Syafrita Y, Permana H. Relationship of serum tau levels with cognitive functions and factors affecting the cognitive function decrease in Parkinson’s disease patients. Biosci Med J Biomed Transl Res. 2021;5:513–9.

    Google Scholar 

  217. Syafrita Y, Istarini A, Busra M, Indra S, Susanti R. Relationship between plasma level of beta-amyloid, alpha-synuclein, and tau protein with cognitive impairment in Parkinson disease. Open Access Maced J Med Sci. 2022;10:663–7.

    Article  Google Scholar 

  218. Chojdak-Łukasiewicz J, Małodobra-Mazur M, Zimny A, Noga L, Paradowski B. Plasma tau protein and Aβ42 level as markers of cognitive impairment in patients with Parkinson’s disease. Adv Clin Exp Med. 2020;29:115–21.

    Article  PubMed  Google Scholar 

  219. Lin WT, Shaw JS, Cheng FY, Chen PH. Plasma total tau predicts executive dysfunction in Parkinson’s disease. Acta Neurol Scand. 2022;145:30–7.

    Article  CAS  PubMed  Google Scholar 

  220. Chen NC, Chen HL, Li SH, Chang YH, Chen MH, Tsai NW, et al. Plasma levels of α-synuclein, Aβ-40 and T-tau as biomarkers to predict cognitive impairment in Parkinson’s disease. Front Aging Neurosci. 2020;12:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Williams-Gray CH, Evans JR, Goris A, Foltynie T, Ban M, Robbins TW, et al. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain. 2009;132:2958–69.

    Article  PubMed  Google Scholar 

  222. Schirinzi T, Zenuni H, Grillo P, Bovenzi R, Guerrera G, Gargano F, et al. Tau and amyloid-β peptides in serum of patients with Parkinson’s disease: correlations with CSF levels and clinical parameters. Front Neurol. 2022;13:748599.

  223. Chung CC, Chan L, Chen JH, Bamodu OA, Chiu HW, Hong CT. Plasma extracellular vesicles tau and β-amyloid as biomarkers of cognitive dysfunction of Parkinson’s disease. FASEB J. 2021;35:e21895.

    Article  CAS  PubMed  Google Scholar 

  224. Blommer J, Pitcher T, Mustapic M, Eren E, Yao PJ, Vreones MP, et al. Extracellular vesicle biomarkers for cognitive impairment in Parkinson’s disease. Brain. 2023;146:195–208.

    Article  PubMed  Google Scholar 

  225. De Bartolo MI, Vivacqua G, Belvisi D, Mancinelli R, Fabbrini A, Manzo N, et al. A combined panel of salivary biomarkers in de novo Parkinson’s disease. Ann Neurol. 2023;93:446–59.

    Article  PubMed  Google Scholar 

  226. Georges A, Das JM. Traumatic brain injury. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

    Google Scholar 

  227. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007;22:341–53.

    Article  PubMed  Google Scholar 

  228. Rubenstein R, Chang B, Davies P, Wagner AK, Robertson CS, Wang KKW. A novel, ultrasensitive assay for tau: potential for assessing traumatic brain injury in tissues and biofluids. J Neurotrauma. 2015;32:342–52.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Cristofori I, Levin HS. Traumatic brain injury and cognition. In: Grafman J, Salazar AM, editors. Handbook of clinical neurology. Vol. 128. Elsevier; 2015. p. 579–611.

  230. Zemlan FP, Jauch EC, Mulchahey JJ, Gabbita SP, Rosenberg WS, Speciale SG, et al. C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res. 2002;947:131–9.

    Article  CAS  PubMed  Google Scholar 

  231. Forouzan A, Motamed H, Delirrooyfard A, Zallaghi S. Serum cleaved tau protein and clinical outcome in patients with minor head trauma. Open Access Emerg Med. 2020;12:7–12.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Chatfield DA, Zemlan FP, Day DJ, Menon DK. Discordant temporal patterns of S100 β and cleaved tau protein elevation after head injury: a pilot study. Br J Neurosurg. 2002;16:471–6.

    Article  CAS  PubMed  Google Scholar 

  233. Hicks AJ, Ponsford JL, Spitz G, Dore V, Krishnadas N, Roberts C, et al. β-Amyloid and tau imaging in chronic traumatic brain injury: a cross-sectional study. Neurology. 2022;99:e1131–41.

    Article  CAS  PubMed  Google Scholar 

  234. Johnson VE, Stewart W, Smith DH. Widespread tau and amyloid‐beta pathology many years after a single traumatic brain injury in humans. Brain Pathol. 2011;22:142–9.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Takahata K, Kimura Y, Sahara N, Koga S, Shimada H, Ichise M, et al. PET-detectable tau pathology correlates with long-term neuropsychiatric outcomes in patients with traumatic brain injury. Brain. 2019;142:3265–79.

    Article  PubMed  Google Scholar 

  236. Marklund N, Vedung F, Lubberink M, Tegner Y, Johansson J, Blennow K, et al. Tau aggregation and increased neuroinflammation in athletes after sports-related concussions and in traumatic brain injury patients—a PET/MR study. Neuroimage Clin. 2021;30:102665.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Franz G, Beer R, Kampfl A, Engelhardt K, Schmutzhard E, Ulmer H, et al. Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology. 2003;60:1457–61.

    Article  CAS  PubMed  Google Scholar 

  238. Öst M, Nylén K, Csajbok L, Öhrfelt AO, Tullberg M, Wikkelsö C, et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology. 2006;67:1600–4.

    Article  PubMed  Google Scholar 

  239. Caprelli MT, Mothe AJ, Tator CH. Hyperphosphorylated tau as a novel biomarker for traumatic axonal injury in the spinal cord. J Neurotrauma. 2018;35:1929–41.

    Article  PubMed  Google Scholar 

  240. Neselius S, Brisby H, Theodorsson A, Blennow K, Zetterberg H, Marcusson J. CSF-biomarkers in olympic boxing: diagnosis and effects of repetitive head trauma. PLoS ONE. 2012;7:e33606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Taghdiri F, Multani N, Tarazi A, Naeimi SA, Khodadadi M, Esopenko C, et al. Elevated cerebrospinal fluid total tau in former professional athletes with multiple concussions. Neurology. 2019;92:e2717–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Bulut M, Koksal O, Dogan S, Bolca N, Ozguc H, Korfali E, et al. Tau protein as a serum marker of brain damage in mild traumatic brain injury: preliminary results. Adv Ther. 2006;23:12–22.

    Article  CAS  PubMed  Google Scholar 

  243. Liliang PC, Liang CL, Weng HC, Lu K, Wang KW, Chen HJ, et al. Tau proteins in serum predict outcome after severe traumatic brain injury. J Surg Res. 2010;160:302–7.

    Article  CAS  PubMed  Google Scholar 

  244. Neselius S, Zetterberg H, Blennow K, Randall J, Wilson D, Marcusson J, et al. Olympic boxing is associated with elevated levels of the neuronal protein tau in plasma. Brain Inj. 2013;27:425–33.

    Article  PubMed  Google Scholar 

  245. Guzel A, Karasalihoglu S, Aylanç H, Temizöz O, Hiçdönmez T. Validity of serum tau protein levels in pediatric patients with minor head trauma. Am J Emerg Med. 2010;28:399–403.

    Article  PubMed  Google Scholar 

  246. Olczak M, Niderla-Bielińska J, Kwiatkowska M, Samojłowicz D, Tarka S, Wierzba-Bobrowicz T. Tau protein (MAPT) as a possible biochemical marker of traumatic brain injury in postmortem examination. Forensic Sci Int. 2017;280:1–7.

    Article  CAS  PubMed  Google Scholar 

  247. Rubenstein R, Chang B, Yue JK, Chiu A, Winkler EA, Puccio AM, et al. Comparing plasma phospho tau, total tau, and phospho tau-total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol. 2017;74:1063–72.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Bazarian JJ, Zemlan FP, Mookerjee S, Stigbrand T. Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Inj. 2006;20:759–65.

    Article  PubMed  Google Scholar 

  249. Marklund N, Blennow K, Zetterberg H, Ronne-Engström E, Enblad P, Hillered L. Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury: clinical article. J Neurosurg. 2009;110:1227–37.

    Article  CAS  PubMed  Google Scholar 

  250. Ajitkumar A, Jesus OD. Huntington disease. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

  251. Roos RA. Huntington’s disease: a clinical review. Orphanet J Rare Dis. 2010;5:40.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Gratuze M, Cisbani G, Cicchetti F, Planel E. Is Huntington’s disease a tauopathy? Brain. 2016;139:1014–25.

    Article  PubMed  Google Scholar 

  253. L’Episcopo F, Drouin-Ouellet J, Tirolo C, Pulvirenti A, Giugno R, Testa N, et al. GSK-3β-induced tau pathology drives hippocampal neuronal cell death in Huntington’s disease: involvement of astrocyte–neuron interactions. Cell Death Dis. 2016;7:e2206.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Masnata M, Salem S, de Rus Jacquet A, Anwer M, Cicchetti F. Targeting tau to treat clinical features of Huntington’s disease. Front Neurol. 2020;11:580732.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Baskota SU, Lopez OL, Greenamyre JT, Kofler J. Spectrum of tau pathologies in Huntington’s disease. Lab Investig. 2019;99:1068–77.

    Article  CAS  PubMed  Google Scholar 

  256. Blum D, Herrera F, Francelle L, Mendes T, Basquin M, Obriot H, et al. Mutant huntingtin alters tau phosphorylation and subcellular distribution. Hum Mol Genet. 2015;24:76–85.

    Article  CAS  PubMed  Google Scholar 

  257. Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 2016;6:6.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Davis MY, Keene CD, Jayadev S, Bird T. The co-occurrence of Alzheimer’s disease and Huntington’s disease: a neuropathological study of 15 elderly Huntington’s disease subjects. J Huntingt Dis. 2014;3:209–17.

    Article  CAS  Google Scholar 

  259. Liu P, Smith BR, Huang ES, Mahesh A, Vonsattel JPG, Petersen AJ, et al. A soluble truncated tau species related to cognitive dysfunction and caspase-2 is elevated in the brain of Huntington’s disease patients. Acta Neuropathol Commun. 2019;7:111.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Zhao X, Kotilinek LA, Smith B, Hlynialuk C, Zahs K, Ramsden M, et al. Caspase-2 cleavage of tau reversibly impairs memory. Nat Med. 2016;22:1268–76.

    Article  CAS  PubMed  Google Scholar 

  261. Jellinger KA. Alzheimer-type lesions in Huntington’s disease. J Neural Transm. 1998;105:787–99.

    Article  CAS  PubMed  Google Scholar 

  262. Moss RJ, Mastri AR, Schut LJ. The coexistence and differentiation of late onset Huntington’s disease and Alzheimer’s disease. A case report and review of the literature. J Am Geriatr Soc. 1988;36:237–41.

    Article  CAS  PubMed  Google Scholar 

  263. McIntosh GC, Jameson HD, Markesbery WR. Huntington disease associated with Alzheimer disease. Ann Neurol. 1978;3:545–8.

    Article  CAS  PubMed  Google Scholar 

  264. Fernández-Nogales M, Cabrera JR, Santos-Galindo M, Hoozemans JJM, Ferrer I, Rozemuller AJM, et al. Huntington’s disease is a four-repeat tauopathy with tau nuclear rods. Nat Med. 2014;20:881–5.

    Article  PubMed  Google Scholar 

  265. St-Amour I, Turgeon A, Goupil C, Planel E, Hébert SS. Co-occurrence of mixed proteinopathies in late-stage Huntington’s disease. Acta Neuropathol. 2018;135:249–65.

    Article  CAS  PubMed  Google Scholar 

  266. Fernández-Nogales M, Lucas JJ. Altered levels and isoforms of tau and nuclear membrane invaginations in Huntington’s disease. Front Cell Neurosci. 2020;13:574.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Caparros-Lefebvre D, Kerdraon O, Devos D, Dhaenens CM, Blum D, Maurage CA, et al. Association of corticobasal degeneration and Huntington’s disease: can tau aggregates protect Huntingtin toxicity? Mov Disord. 2009;24:1089–90.

    Article  PubMed  Google Scholar 

  268. Alpaugh M, Masnata M, de Rus Jacquet A, Lepinay E, Denis HL, Saint-Pierre M, et al. Passive immunization against phosphorylated tau improves features of Huntington’s disease pathology. Mol Ther. 2022;30:1500–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Reyes MG, Gibbons S. Dementia of the Alzheimer’s type and Huntington’s disease. Neurology. 1985;35:273–7.

    Article  CAS  PubMed  Google Scholar 

  270. Giehl K, Reetz K, Dogan I, Werner C, Schulz JB, Hammes J, et al. Tau pathology in Huntington’s disease: a brief in vivo PET-imaging report. Basal Ganglia. 2017;8:13.

    Article  Google Scholar 

  271. Constantinescu R, Romer M, Zetterberg H, Rosengren L, Kieburtz K. Increased levels of total tau protein in the cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord. 2011;17:714–5.

    Article  PubMed  Google Scholar 

  272. Zerr I, Bähr M. Is there a role of tau in Huntington′s disease? J Neurochem. 2016;139:9–10.

    Article  CAS  PubMed  Google Scholar 

  273. Niemelä V, Burman J, Blennow K, Zetterberg H, Larsson A, Sundblom J. Cerebrospinal fluid sCD27 levels indicate active T cell-mediated inflammation in premanifest Huntington’s disease. PLoS ONE. 2018;13:e0193492.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Niemelä V, Landtblom AM, Blennow K, Sundblom J. Tau or neurofilament light—which is the more suitable biomarker for Huntington’s disease? PLoS ONE. 2017;12:e0172762.

    Article  PubMed  PubMed Central  Google Scholar 

  275. Wild EJ, Boggio R, Langbehn D, Robertson N, Haider S, Miller JRC, et al. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Invest. 2015;125:1979–86.

    Article  PubMed  PubMed Central  Google Scholar 

  276. Rodrigues FB, Byrne L, McColgan P, Robertson N, Tabrizi SJ, Leavitt BR, et al. Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington’s disease. J Neurochem. 2016;139:22–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Vinther-Jensen T, Börnsen L, Budtz-Jørgensen E, Ammitzbøll C, Larsen IU, Hjermind LE, et al. Cerebrospinal fluid markers in premanifest and manifest Huntington’s disease: evidence of sequential development of neurodegeneration and inflammation. Eur J Neurol. 2016;23:565.

    Google Scholar 

  278. Sawant N, Reddy PH. Role of phosphorylated tau and glucose synthase kinase 3 beta in Huntington’s disease progression. J Alzheimers Dis. 2019;72:S177–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

FC is a recipient of a Researcher Chair from the Fonds de Recherche du Québec en Santé (FRQS, 35059) providing salary support and operating funds and receives funding from the Canadian Institutes of Health Research (CIHR, PJT-162164 and PJT-168865) to conduct her HD-related research. EL is supported by a doctoral scholarship from FRQS.

Author information

Authors and Affiliations

Authors

Contributions

EL reviewed the literature, conceptualized and prepared figures and wrote the manuscript. FC contributed to the literature review, conceptualized figures and wrote the manuscript.

Corresponding author

Correspondence to Francesca Cicchetti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepinay, E., Cicchetti, F. Tau: a biomarker of Huntington’s disease. Mol Psychiatry 28, 4070–4083 (2023). https://doi.org/10.1038/s41380-023-02230-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02230-9

This article is cited by

Search

Quick links